
SimBiology®

User's Guide

R2016b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

SimBiology® User's Guide
© COPYRIGHT 2005–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 Online only Updated for Version 1.0.1 (Release 2006a)
May 2006 Online only Updated for Version 2.0 (Release 2006a+)
September 2006 Online only Updated for Version 2.0.1 (Release 2006b)
March 2007 Online only Rereleased for Version 2.1.1 (Release 2007a)
September 2007 Online only Rereleased for Version 2.1.2 (Release 2007b)
October 2007 Online only Updated for Version 2.2 (Release 2007b+)
March 2008 Online only Updated for Version 2.3 (Release 2008a)
October 2008 Online only Updated for Version 2.4 (Release 2008b)
March 2009 Online only Updated for Version 3.0 (Release 2009a)
September 2009 Online only Updated for Version 3.1 (Release 2009b)
March 2010 Online only Updated for Version 3.2 (Release 2010a)
September 2010 Online only Updated for Version 3.3 (Release 2010b)
April 2011 Online only Updated for Version 3.4 (Release 2011a)
September 2011 Online only Updated for Version 4.0 (Release 2011b)
March 2012 Online only Updated for Version 4.1 (Release 2012a)
September 2012 Online only Updated for Version 4.2 (Release 2012b)
March 2013 Online only Updated for Version 4.3 (Release 2013a)
September 2013 Online only Updated for Version 4.3.1 (Release 2013b)
March 2014 Online only Updated for Version 5.0 (Release 2014a)
October 2014 Online only Updated for Version 5.1 (Release 2014b)
March 2015 Online only Updated for Version 5.2 (Release 2015a)
September 2015 Online only Updated for Version 5.3 (Release 2015b)
March 2016 Online only Updated for Version 5.4 (Release 2016a)
September 2016 Online only Updated for Version 5.5 (Release 2016b)

Contents

SimBiology Desktop
1

General Workflow . 1-2

SimBiology Desktop Navigation . 1-4

SimBiology Desktop Help and Tools . 1-8
Contextual Help . 1-8
Message Indicators . 1-9
Contextual Icons . 1-13
Graphical Context Menus . 1-14
Tools . 1-15

Keyboard Shortcuts for SimBiology Desktop 1-17
Shortcuts for the Diagram View . 1-17

Modeling Workflow . 1-19

Model Views . 1-21
Diagram View . 1-21
Table View . 1-42
Equations View . 1-43

Setting Preferences . 1-49

Libraries . 1-51
Kinetic Laws Library . 1-52
Units Library . 1-53
Unit Prefixes Library . 1-53
Blocks Library . 1-54

Analysis Workflow . 1-55

Task Editor . 1-58

v

Built-in Tasks . 1-60

Configuring Tasks . 1-63
Configuring Model-Related Settings 1-63
Configuring Simulation-Related Settings 1-63
Configuring Task-Specific Settings 1-64

Running Tasks . 1-69
Configuring Live Plots . 1-69
Exploring Models . 1-72

External Data and Task Results . 1-76
External Data . 1-77
Task Results . 1-79

Modeling
2

What is a Model? . 2-2
Model Definition . 2-2
Expressions . 2-2
Quantities . 2-3
Model Hierarchy . 2-4
More About . 2-4

Model Modifiers . 2-5
Variants . 2-5
Doses . 2-5

Representing a Model and Model Modifiers 2-6
Construct a Simple Model . 2-6
SimBiology Objects . 2-6

Model Object . 2-8

Objects Representing Quantities . 2-9
Scoping of Compartments, Species, and Parameters 2-9
Naming of Compartments and Species 2-9
More About . 2-9

vi Contents

Compartment Object . 2-10

Species Object . 2-11
How Species Amounts Change During Simulations 2-11
Keeping a Species Amount Unchanged 2-11
Changing a Species Amount with a Reaction or Rule 2-12
Changing a Species Amount with a Rule When Species is Part

of a Reaction . 2-12
Keeping a Species Amount Unchanged When Species is Part of

a Reaction that Adds or Removes Mass 2-13

Parameter Object . 2-15
Scope of Parameter Objects . 2-15

Objects Representing Expressions . 2-16
When Reactions, Rules, and Events Specify Parameters . . . 2-16
More About . 2-16

Definitions and Evaluations of Reactions 2-17
Writing Reaction Expressions . 2-17
Writing Reaction Rate Expressions Explicitly 2-18
Creating Reaction Rate Expressions Using Kinetic Law

Objects . 2-19
Examples of Creating Reaction Rates 2-20
How Reaction Rates Are Evaluated 2-21
Viewing Equations for Reactions . 2-22
More About . 2-22

Definitions and Evaluations of Rules 2-23
Overview . 2-23
Initial Assignment . 2-23
Repeated Assignment . 2-24
Algebraic Rules . 2-24
Repeated Assignment vs. Algebraic Rules 2-25
Rate Rules . 2-25
Writing Rule Expressions . 2-25
Considerations When Imposing Constraints 2-26
Conservation of Amounts When Simulation Time = 0 and Time

> 0 . 2-26
Examples . 2-28

Event Object . 2-30
Overview . 2-30

vii

Event Triggers . 2-30
Event Functions . 2-31
Specifying Event Triggers . 2-31
Specifying Event Functions . 2-33
Simulation Solvers for Models Containing Events 2-34
How Events Are Evaluated . 2-34
Evaluation of Simultaneous Events 2-36
Evaluation of Multiple Event Functions 2-37
When One Event Triggers Another Event 2-37
Cyclical Events . 2-38
Using Events to Address Discontinuities in Rule and Reaction

Rate Expressions . 2-38

Objects Representing Model Modifiers 2-39
More About . 2-39

Variant Object . 2-40
Creating and Simulating with Variants 2-40
Simulating with Multiple Variants in a Model 2-41

Doses . 2-42
Representing Doses . 2-42
Creating Dose Objects . 2-42
Simulation Solvers for Models Containing Doses 2-44

Scoping . 2-45

Simulate Biological Variability of the Yeast G Protein Cycle
Using the Wild-Type and Mutant Strains 2-46

Create and Simulate a Model with a Custom Function 2-48
Overview . 2-48
Create a Custom Function . 2-50
Load the Example Model . 2-51
Add the Custom Function to the Example Model 2-51
Define a Rule to Change Parameter Value 2-51
Add an Event to Reset the Solver at a Discontinuity 2-52
Simulate the Modified Model . 2-52

View Model Equations . 2-56

Component Usage . 2-57
Species Usage . 2-57

viii Contents

Parameter Usage . 2-57
Compartment Usage . 2-58
Unit and UnitPrefix Usage . 2-58
Abstract Kinetic Law Usage . 2-58

Structural Analysis
3

Overview of Structural Analysis . 3-2

Model Verification . 3-3
What is Model Verification? . 3-3
When to Verify a Model . 3-3
Verifying That a Model Has No Warnings or Errors 3-4
More About . 3-4

Verifying a Model . 3-5

Conserved Moiety Determination . 3-6
Introduction to Moiety Conservation 3-6
Algorithms for Conserved Cycle Calculations 3-6
More About . 3-8

Determining Conserved Moieties . 3-9

Determining the Adjacency Matrix for a Model 3-12
What Is an Adjacency Matrix? . 3-12
Retrieving an Adjacency Matrix for a Model 3-12

Determining the Stoichiometry Matrix for a Model 3-14
What Is a Stoichiometry Matrix? . 3-14
Retrieving a Stoichiometry Matrix for a Model 3-15

Selecting Absolute Tolerance and Relative Tolerance for
Simulation . 3-17

Algorithm . 3-17
Absolute Tolerance Scaling . 3-18

ix

Simulation and Analysis
4

Model Simulation . 4-2

Deriving ODEs from Reactions . 4-4

Simulation and Analysis . 4-7
Typical Workflow . 4-7

Choosing a Simulation Solver . 4-8

SUNDIALS Solvers . 4-9

Stochastic Solvers . 4-10
When to Use Stochastic Solvers . 4-10
Model Prerequisites for Simulating with a Stochastic Solver 4-10
What Happens During a Stochastic Simulation? 4-11
Stochastic Simulation Algorithm (SSA) 4-11
Explicit Tau-Leaping Algorithm . 4-11
Implicit Tau-Leaping Algorithm . 4-12
References . 4-13

Ensemble Runs of Stochastic Simulations 4-15
Running Ensemble Simulations . 4-15

Configuring Simulation Settings . 4-16

Create and Simulate a Simple Model 4-17

Simulate the Yeast Heterotrimeric G Protein Cycle 4-22

Sensitivity Calculation . 4-27
About Calculating Sensitivities . 4-27
Model Requirements for Calculating Sensitivities 4-27
Calculate Sensitivities using sbiosimulate or

SimFunctionSensitivity Object . 4-28
References . 4-30

Calculate Sensitivities . 4-31
Overview . 4-31
Load and Configure the Model for Sensitivity Analysis 4-32

x Contents

Perform Sensitivity Analysis . 4-32
Extract and Plot Sensitivity Data . 4-33

Identify Important Network Components from an Apoptosis
Model Using Sensitivity Analysis 4-35

Perform a Parameter Scan . 4-40

Nonlinear Mixed-Effects Modeling . 4-44
What Is a Nonlinear Mixed-Effects Model? 4-44
Nonlinear Mixed-Effects Modeling Workflow 4-46
Specify a Covariate Model . 4-47
Specify an Error Model . 4-49
Maximum Likelihood Estimation . 4-49
Obtain the Fitting Status . 4-50

Nonlinear Regression . 4-53
What is Nonlinear Regression? . 4-53
Fitting Options in SimBiology . 4-54
Maximum Likelihood Estimation . 4-56
Fitting Workflow for sbiofit . 4-58

Supported Methods for Parameter Estimation 4-60

Error Models . 4-62

Progress Plot . 4-63
Quality Measure Plots . 4-63
Estimated Parameter Plot . 4-66
Status Bar . 4-68

Estimate Parameters of a G protein Model 4-69
Overview . 4-69
Loading the Example Model . 4-70
Defining Experimental Data . 4-70
Simulating the G Protein Model . 4-71
Estimating the kGd Parameter in the G Protein Model 4-73
Simulating and Plotting Results Using the Estimated

Parameter . 4-74
Estimating Other Parameters in the G Protein Model 4-76

Accelerating Model Simulations and Analyses 4-81
What Is Acceleration? . 4-81

xi

What Simulations and Analyses Can Be Accelerated? 4-81
When to Accelerate Simulations and Analyses 4-81
Prerequisites for Accelerating Simulations and Analyses . . . 4-82
Accelerate a Simulation or Analysis 4-82
Troubleshooting Accelerated Simulations and Analyses 4-83

Non-compartmental Analysis . 4-84
Data . 4-84
Dosing . 4-84
Calculating NCA Parameters . 4-90

Pharmacokinetic Modeling
5

Pharmacokinetic Modeling Functionality 5-2
Overview . 5-2
Required and Recommended Software for Pharmacokinetic

Modeling . 5-2
How SimBiology Supports Pharmacokinetic Modeling 5-3
Using the Command Line Versus the SimBiology Desktop . . 5-5
Pharmacokinetic Modeling Example 5-5
Acknowledgements: Tobramycin Data Set 5-5

Importing Data — Supported Files and Data Types 5-7
Supported Files and Data Types . 5-7
Support for Importing NONMEM Formatted Files 5-7
Creating a Data File with SimBiology Definitions 5-12

Importing Data . 5-13
Import Data from Files . 5-13
Importing Data from NONMEM-Formatted Files 5-14
Other Resources for Importing Data 5-15

Import Data from a NONMEM-Formatted File Using the
SimBiology Desktop . 5-16

Create Pharmacokinetic Models . 5-25
Ways to Create or Import Pharmacokinetic Model 5-25
How SimBiology Models Represent Pharmacokinetic Models 5-25
Create a Pharmacokinetic Model Using the Command Line . 5-27

xii Contents

Dosing Types . 5-29
Elimination Types . 5-31
Intercompartmental Clearance . 5-33
Unit Conversion for Imported Data 5-34

About Data Fitting in PKPD Models 5-36
Data Fitting Functionality . 5-36
Prerequisites for Data Fitting . 5-37
Prerequisites for Using Custom SimBiology Models in Data

Fitting . 5-37

Perform Data Fitting with PKPD Models 5-41
Data Fitting Workflow . 5-41
Specify and Classify the Data to Fit 5-42
Specify Solver Type and Options for Fitting 5-44
Set Initial Estimates . 5-44
Specify a Nonlinear, Mixed-Effects Model 5-45
Specify a Covariate Model . 5-47
Specify the Covariance Pattern of Random Effects 5-49
Specify an Error Model . 5-50
Specify Parameter Transformations 5-51
Perform Population Fitting . 5-52
Simultaneously Fitting Data from Multiple Dose Levels . . . 5-56
Perform Individual Fitting . 5-56

Creating Reaction Rates
A

Create Reaction Rates . A-2

Define Reaction Rates with Mass Action Kinetics A-3
Definition of Mass Action Kinetics . A-3
Zero-Order Reactions . A-3
First-Order Reactions . A-4
Second-Order Reactions . A-5
Reversible Mass Action . A-7

Define Reaction Rates with Enzyme Kinetics A-9
Simple Model for Single Substrate Catalyzed Reactions A-9
Enzyme Reactions with Differential Rate Equations A-9

xiii

Enzyme Reactions with Mass Action Kinetics A-11
Enzyme Reactions with Irreversible Henri-Michaelis-Menten

Kinetics . A-12

Create Rate Rules
B

Create Rate Rules . B-2

Create a Rate Rule for a Constant Rate of Change B-3

Create a Rate Rule for an Exponential Rate of Change B-6

Create a Rate Rule to Define a Differential Rate Equation . B-8

Create a Rate Rule for the Rate of Change That Is
Determined by Another Species . B-9

Models Used in Examples
C

Minimal Cascade Model for a Mitotic Oscillator C-2
Goldbeter Model . C-2
SimBiology Model with Rate Rules . C-5
SimBiology Model with Reactions . C-6
References . C-16

Model of the Yeast Heterotrimeric G Protein Cycle C-17
Background on G Protein Cycles . C-17
Modeling a G Protein Cycle . C-18
References . C-21

Model of M-Phase Control in Xenopus Oocyte Extracts . . . C-22
M-Phase Control Model . C-22
M-Phase Control Equations . C-24
SimBiology Model with Rate and Algebraic Rules C-32
SimBiology Model with Reactions and Algebraic Rules C-38

xiv Contents

References . C-55

xv

1

SimBiology Desktop

• “General Workflow” on page 1-2
• “SimBiology Desktop Navigation” on page 1-4
• “SimBiology Desktop Help and Tools” on page 1-8
• “Keyboard Shortcuts for SimBiology Desktop” on page 1-17
• “Modeling Workflow” on page 1-19
• “Model Views” on page 1-21
• “Setting Preferences” on page 1-49
• “Libraries” on page 1-51
• “Analysis Workflow” on page 1-55
• “Task Editor” on page 1-58
• “Built-in Tasks” on page 1-60
• “Configuring Tasks” on page 1-63
• “Running Tasks” on page 1-69
• “External Data and Task Results” on page 1-76

1 SimBiology Desktop

General Workflow

The SimBiology desktop is a user interface with a set of integrated tools that are
designed to facilitate building, simulating, and analyzing models of dynamic systems.
It provides an interactive interface to build models and perform model analyses such
as simulation, sensitivity calculation, and parameter estimation. It lets you save your
modeling work as a SimBiology project that contains models, experimental data, model
analysis tasks, and task results.

1-2

 General Workflow

A SimBiology model is a set of quantities and mathematical expressions that represent a
dynamic system. Expressions describe the mathematical relationships among quantities.
For details about SimBiology models, see “What is a Model?” on page 2-2.

The desktop lets you build such a dynamic model interactively. One approach is
connecting graphical blocks that represent modeling elements such as quantities and
expressions. Alternatively, you can build a model by entering expressions as strings such
as A –> B, where A and B are quantities participating in a transformation process.

Once you have a model, you can perform analyses on it. For instance, you can simulate
the model to see its dynamic behavior over a time course or explore biological variability
by simulating alternate scenarios. You can also perform parameter scans and sensitivity
analysis to investigate the influence of model parameters and initial conditions on model
behavior. To help you perform these analyses, the desktop provides built-in scripts with a
user interface called tasks.

You can import time-course data to the desktop. It provides tools for filtering and
visualizing the data. Once imported, you can use the data to estimate model parameters
or compare to simulation results.

As you build and analyze models, you can use built-in components from libraries.
For instance, the units library provides the unit functionality and has a collection of
predefined units that you can use in your model. To help you build models graphically,
the desktop provides the blocks library with blocks representing different modeling
elements. Custom elements can be added to any of these libraries. For details, see
“Libraries” on page 1-51.

As you work on models and analyses, the desktop continuously checks if there are any
errors or warnings and indicates them using message indicators. You can hover over each
indicator to see the corresponding warning or error message.

Preferences let you customize model building and display settings, task settings, and
search options.

More About
• “SimBiology Desktop Navigation” on page 1-4
• “SimBiology Desktop Help and Tools” on page 1-8
• “Setting Preferences” on page 1-49
• “Libraries” on page 1-51

1-3

1 SimBiology Desktop

SimBiology Desktop Navigation

To open the SimBiology desktop, enter simbiology at the MATLAB® command prompt
or select SimBiology on the Apps tab.

1-4

 SimBiology Desktop Navigation

1-5

1 SimBiology Desktop

The desktop provides options to help you build models, load data, explore data with plots,
and add tasks for model analyses. You can find these options in the toolstrip, content
panel, action menu, and address bar.

The toolstrip has the Home and View tabs. Depending on what is open, other context-
sensitive tabs appear. The content panel shows the contents of a project, available
libraries, and files that are recently open. Click the Content button to open the content
panel. The action menu contains additional functionality related to an open panel. For
instance, after opening a model, you can rename it or export it as an SBML file using
the corresponding options from the action menu. The address bar shows which panel is
open. You can use it to see the contents of a project and open them. Click an arrow in the
address to open other panels.

When you open data, a model, or a library, the desktop shows the related items in a
panel displayed in the workspace. For instance, the next figure shows a model open in
the Diagram view. Its graphical representation is displayed in a panel as shown. If there
are multiple panels such as other views of the model, each panel opens in its own tab.

1-6

 SimBiology Desktop Navigation

In the content panel, Project contains a list of models, tasks, task results, and imported
data. To open an item in a project, double-click it. Models, task results, or data are
displayed in the workspace when opened. Opening a task displays it in the task editor.
Libraries lists available units, unit prefixes, and blocks that you can use while building
a model.

Recent Files has a list of files that you recently opened, projects and data from
SimBiology examples, and projects from MATLAB Central File Exchange. If you open
any model or data file listed in the recent files, the desktop imports the model or data
and adds to the currently open project or to a new project.

More About
• “General Workflow” on page 1-2
• “SimBiology Desktop Help and Tools” on page 1-8
• “Setting Preferences” on page 1-49

1-7

http://www.mathworks.com/products/simbiology/model-examples.html

1 SimBiology Desktop

SimBiology Desktop Help and Tools

While building models and configuring tasks, you can obtain information about modeling
elements and tasks from context-sensitive help. The desktop identifies errors and
warnings of a project using message indicators. In addition, you can check the status bar
to find out if the desktop is running a task or performing actions in the background such
as loading a project. As you construct models using building blocks, you can use graphical
context menus to edit block properties. The desktop also provides various tools for model
building, error checking, and searching.

Contextual Help

The desktop provides context-sensitive help with additional information about models
and tasks. For instance, while building models, you can get more information about
quantities and expressions and how to use them. Look for the information icon, , and
hover over it to see the help. To open the help as a separate dialog, click Pin on the top
right corner.

1-8

 SimBiology Desktop Help and Tools

Message Indicators

As you build models and configure tasks, the desktop identifies errors and warnings with
message indicators. The indicators are color-coded as follows.

• Red – one or more errors (and warnings) were detected.
• Orange – warnings, but no errors, were detected.
• Green – no errors or warnings were detected.

Click a square indicator, such as , to iterate through errors or warnings. Hover over a
dash indicator, such as , to see the specific error or warning message. Clicking a dash

1-9

1 SimBiology Desktop

indicator highlights the relevant row in a table. The following figure shows the locations
of indicators in the desktop.

Message Indicators in Diagram View

For details about the diagram view and other views of a model, see “Model Views” on
page 1-21.

1-10

 SimBiology Desktop Help and Tools

Message Indicators in Table View

For details about the table view and other views of a model, see “Model Views” on page
1-21.

1-11

1 SimBiology Desktop

Message Indicators in Task Editor

For details about the task editor, see “Task Editor” on page 1-58.

1-12

 SimBiology Desktop Help and Tools

Contextual Icons

The desktop uses contextual icons to provide more information about quantities and
blocks. For instance, in the Diagram view, an icon is displayed above a block if it has

an error: . In the Table view, an icon is shown when a species is being dosed or a
quantity is being updated by an assignment rule.

For more information, hover the mouse over an icon. The following table has the
complete list of contextual icons and corresponding model views where they are
displayed.

IconDescription Diagram
View

Table
View

Equations
View

Block has an error. ✓ χ χ
Block has a warning. ✓ χ χ

Block is not being used in a model. ✓ χ χ

Block is pinned to its current location in the Diagram view. ✓ χ χ
Species block has the ConstantAmount property set to true. ✓ χ χ

1-13

1 SimBiology Desktop

IconDescription Diagram
View

Table
View

Equations
View

Species block has the BoundaryCondition property set to true. ✓ χ χ
Species or event block is cloned. ✓ χ χ
Reaction block has the Reversible property set to true. ✓ χ χ
Reaction, rule, or event block has the Active property set to false,
meaning it does not participate in the model simulation.

✓ χ χ

Compartment block has the ConstantCapacity property set to
true.

✓ χ χ

,Reaction-scoped parameter shadows (i.e., takes precedence
over) a model-scoped parameter. The up arrow icon indicates
the parameter that shadows. The down arrow icon indicates the
parameter that is being shadowed.

✓ ✓ ✓

Parameter block has the ConstantValue property set to true. ✓ χ χ
Species amount, parameter value, or compartment volume
(capacity) is defined by an assignment rule.

✓ ✓ ✓

Species amount is being increased by one or more doses. You must
select the desired dose(s) in a task to see the dosing effects.

✓ ✓ ✓

Graphical Context Menus

While building models using blocks, you can configure block properties using graphical
context menus. Select a block and then hover over the graphical icons for the context
menu options.

1-14

 SimBiology Desktop Help and Tools

Tools

The desktop provides the following tools to help you build and analyze models.

Tool Purpose

MATLAB
Code Capture
Tool

Displays the equivalent MATLAB code of the desktop actions.

Diagram
Overview

Shows the graphical representation of an entire model. Use this to pan
through a model and zoom in on a particular area.

Component
Palette

Lists of modeling elements such as quantities. You can drag and drop
these elements to a task when configuring it.

Task Data
Comparison

Compare results from fit tasks. For instance, you may want to run a fit
task multiple times using different optimization methods and compare
the final results using this tool. To compare results, first open the tool.
Then run a fit task, and save the task result. Then make changes to the
task and rerun it. The tool displays the parameter estimation quality
measures, such as log-likelihood, AIC, and BIC, for the last run and
each saved result.

Usages Shows all expressions and tasks that reference a parameter, species,
compartment, variant, dose, kinetic law, unit, unit prefix, or plot types.
Use the context menu of the corresponding entry in a table to show the
usages on page 2-57.

Errors and
Warnings

Displays the error and warnings of a model. To populate the list,
select Verify on the Model tab. When you run a task, SimBiology
automatically checks if there are any errors or warnings. Double-click
an error or warning to go to where it occurs.

Search Results Shows all instances of word or phrase in a model, kinetic law library,
unit and unit prefix library. To search, type in the search box above the
toolstrip.

Tip To search for any keyword or phrase on any open panel, click the
Search button on the Home or Model toolstrip. You can define specific
searching criteria. For instance, you can specifically search for any
parameters whose names start with 'k1'.

1-15

1 SimBiology Desktop

Tip You can dock each tool to the desktop or undock as a separate dialog via the
action menu button on the top right corner of the tool. When docked, you can drag and
reposition the tool anywhere within the desktop.

More About
• “General Workflow” on page 1-2
• “SimBiology Desktop Navigation” on page 1-4
• “Setting Preferences” on page 1-49
• “Keyboard Shortcuts for SimBiology Desktop” on page 1-17

1-16

 Keyboard Shortcuts for SimBiology Desktop

Keyboard Shortcuts for SimBiology Desktop

On Macintosh platforms, use the command key instead of Ctrl.

Shortcuts for the Diagram View

Shortcut Action

Ctrl + P Print the diagram
Ctrl + C Copy block
Ctrl + V Paste block
Ctrl + A Select all blocks
Ctrl + D Duplicate block
Delete Delete block
Ctrl + B Highlight block in the Browser if open or the Table view
Up arrow Move block up by 5 pixels
Down
arrow

Move block down by 5 pixels

Left arrow Move block left by 5 pixels
Right
arrow

Move block right by 5 pixels

Ctrl + any
arrow key

Move block by 1 pixel

Ctrl +
Shift +
any arrow
key

Move block by 10 pixels

Shift +
any arrow
key

Pan the diagram

Ctrl +
Shift + =

Zoom in

Ctrl + – Zoom out
Ctrl + I Toggle selection

1-17

1 SimBiology Desktop

Shortcut Action

Shift + U Move one or more blocks in a clockwise fashion
Ctrl +
Shift + U

Move one or more blocks in an anti-clockwise fashion

Shift + E Expand one or more blocks by increasing the distance between them
Ctrl + E Collapse one or more blocks by decreasing the distance between them
Ctrl +
Shift + F

Show usages of a quantity

Ctrl + F Show search bar

More About
• “SimBiology Desktop Help and Tools” on page 1-8
• “Blocks Library” on page 1-54
• “Diagram View” on page 1-21
• “Table View” on page 1-42

1-18

 Modeling Workflow

Modeling Workflow

A SimBiology model is a dynamic system described by a set of quantities and
mathematical expressions. There are three types of quantities: species, parameter, and
compartment. Three types of expressions describe the mathematical relationships among
quantities. The first type of expression is a reaction which describes a process such as
a transformation, transport, binding or unbinding of reactants and products. Another
type of expression is a class of assignment equations (rules) which define how quantity
values are initialized or updated. The third type is an event that describes a change in a
quantity value during simulation. For details about SimBiology models, see “What is a
Model?” on page 2-2.

1-19

1 SimBiology Desktop

Biological variability can be modeled using a modeling element called variant. A
variant is a collection of quantities with alternate values. Variants do not change the
original quantity values permanently. For instance, you can have a set of values for
immunological parameters of a healthy person represented by a variant and a different
set of values for a cancer patient represented by another variant. You can then simulate
the model with each variant to see the predictions for both cases.

An increase in a species amount or concentration due to an external stimulus such as
an oral or intravenous administration of a drug can be modeled using an element called
dose. You can use an array of doses to explore different dosing regimens and determine
the optimal dosing strategy. For details, see “Doses” on page 2-42.

A model can be built and visualized in three different views: the Diagram view, Table
view, and Equations view. Each view is a different representation of the same model. For
example, the Diagram view shows a graphical representation of the model and lets you
build models interactively. For details on all views, see “Model Views” on page 1-21.

As you build a model, the desktop checks if there are any errors or warnings and
identifies them using message indicators. You can hover over each indicator to see
the corresponding warning or error message. During model verification, the desktop
examines many aspects of the model including the model structure and validity of
mathematical expressions. It also verifies the consistency of units and dimensions, and
flags any issues.

You can save multiple models in one project, which uses a native file format ending in
*.sbproj. Alternatively, a model can be saved to an SBML file, but some SimBiology
features not supported by SBML are not saved with the model. For details, see “SBML
Support”.

Given a model, you can perform several model analyses such as simulation, parameter
estimation, and sensitivity calculation. For details, see “Analysis Workflow” on page
1-55.

More About
• “Model Views” on page 1-21
• “Model Definition” on page 2-2
• “SimBiology Desktop Help and Tools” on page 1-8
• “What Is SBML?”

1-20

 Model Views

Model Views

The SimBiology desktop provides three different views of a model on page 2-2: the
Diagram view, Table view, and Equations view. The Diagram view shows a graphical
representation of a model. It describes the model using a set of connected blocks. Blocks
represent different modeling elements such as quantities and expressions, and the
view shows the relationships between model elements graphically. The Table view
displays modeling elements and their properties in a tabular form. You can use either
view to build a model. The Equations view shows the differential equations and other
expressions such as assignment rules of a model. This view does not let you edit the
model. If you make a change to the model using the Diagram or Table view, the change is
reflected in all views. To open any view, select Open from the Model tab.

Diagram View

The Diagram view shows the structure of a model graphically. It provides information
about how model elements, such as species, interact with one another using a block
diagram. To supplement the diagram, this view also contains the browser that shows the
relationships between quantities and expressions. You can build a model by dragging and
dropping blocks from the block library panel to the browser or diagram. The browser and
diagram are synchronized, and any update or change is reflected in both. The next figure
shows a model open in the Diagram view.

1-21

1 SimBiology Desktop

Diagram

The diagram section contains a set of connected blocks that shows the structure of a
model and the relationships between model quantities and expressions graphically.

You can add new quantities and expressions by dragging and dropping blocks from the
block library panel to the block diagram. To connect two blocks, Ctrl + click (Option +
click for a Mac) the first block and drag to the second block. Double-click a block to edit
its properties. Right-click a block to see the context menu with more options, such as
hiding the block to avoid clutter. Double-click the name of a block to rename.

The desktop uses contextual icons to provide more information about a block. The icons
appear above each block. For instance, if a species is being dosed, a dose icon appears
above the species block. Hover the mouse over the icon for more information. For details,
see contextual icons.

Adding and configuring reactions

Suppose you want to model the pharmacokinetics of antibacterial drugs in a time-kill
curve experiment [1]. Such experiment involve exposing an in vitro bacterial inoculum

1-22

 Model Views

to a fixed antibiotic dose and monitoring bacterial activity over time. You can model
the in vitro drug kinetics using a one-compartment model with linear elimination to
account for drug degradation due to compound instability. This is represented by the
first reaction Drug_Central -> null. Include a second compartment (Biophase) to
incorporate potential pharmacologic delay, which correspond to the second and third
reactions: Drug_Central -> Drug_Central + Drug_Biophase, Drug_Biophase -
> null.

Drag and drop two compartment blocks onto the diagram. Then drop a species block
inside each compartment. To build the first reaction, reaction1, drag and drop a reaction
block onto the diagram. Then draw a line (Ctrl+Click or Options+Click on a Mac) from
the Drug_Central species to reaction1. Double-click the reaction block and the Block
Property Editor opens. In the Quantities Used by Reaction table, enter kdeg in the
Name column as the Forward Rate Parameter. This automatically adds a parameter
named kdeg, which is used as the forward rate constant for the reaction rate, that is,
kdeg*Drug_Central. Similarly, configure the second reaction reaction2. Enter ke as
the forward rate parameter for the reaction. To build the third reaction, reaction3, draw
a line from Drug_Central to Drug_Biophase. A reaction block is automatically added
between two species blocks. The input and output of the Biophase compartment are
modeled as first-order kinetic processes. Drug_Central is both a reactant and product
in the input process, assuming that the presence of the Biophase compartment does
not affect the mass balance. SimBiology indicates such species using a dashed line. The
dashed line can be achieved by drawing another line from reaction2 to Drug_Central.
Defining or updating a quantity value using mathematical equations

The equations can take the form of initial assignments, assignments during the course
of a simulation (repeated assignments), algebraic relationships, or differential equations

1-23

1 SimBiology Desktop

(rate rules). Each equation is represented by a unique block. For details about rule
blocks, see the block library. For more information about rules, see “Definitions and
Evaluations of Rules” on page 2-23.

Suppose, in the above example, you want to set the initial concentration of Drug_Central
to a factor of minimal inhibitory concentration (MIC). You can do so by using an
assignment rule that initialize the concentration of Drug_Central at simulation time = 0,
that is, Drug_Central0 = 0.25*MIC, where MIC is a parameter. The following figure
shows the graphical representation of the assignment rule.

Drag and drop the initial assignment rule block from the block library onto the diagram.
To define the left-hand-side (LHS) of the equation, draw a line from the rule block
to Drug_Central. An arrow appears pointing at Drug_Central. To display the right-
hand-side (RHS) of the equation, right-click the rule block and select Show Only
Expressions. By default, the RHS is set to 1. Double-click it and enter the equation:
Drug_Central = 0.25*MIC. Drag and drop a parameter block and rename it as MIC.
A dash–dot line automatically appears connecting MIC to the rule block indicating MIC
is referenced by the RHS. You can also change the LHS by dragging the arrow (Ctrl
+Click or Option+Click in a Mac) to another quantity.
Incorporating sudden changes in model behavior

You can model sudden changes in model behavior based on a specified condition. For
example, you can reset a parameter value at a certain time point or when a certain

1-24

 Model Views

concentration threshold is crossed. In SimBiology, you can model such changes using a
modeling element called event. An event lets you specify discrete transitions in quantity
values that occur when a custom condition becomes true. Such condition is called an
event trigger. Once the condition becomes true, one or more event functions are executed.
For details, see events on page 2-30.

Suppose you want to set the concentration of Drug_Central at time = 5 to another factor
of MIC as well as the parameter value of the elimination rate constant ke. Specifically,

if (time >= 5)

 Drug_Central = 0.35*MIC;

 ke = p1*Drug_Biophase;

where p1 is another parameter.

The next figure shows the graphical representation of the event.

By default, parameter blocks are hidden from the diagram. To see hidden parameter
blocks such as ke, right-click the diagram, and select Show All Hidden Blocks and
Lines. Drag and drop an event block onto the diagram. To define the quantities that
are being updated by the event, draw a line from the event block to Drug_Central and
another line to ke. Two arrows appear pointing at Drug_Central and ke, which are the
LHS of event functions. To show the RHS of event functions, right-click the event block
and select Show Only Expressions. Double-click the expressions to edit the event

1-25

1 SimBiology Desktop

functions as shown. To see the dash–dot lines indicating quantities referenced in the
RHS of an event function, right-click the event block and select Show Expressions and
Lines (Alt+Click). In this example, MIC, p1, and Drug_Biophase are the referenced
quantities as indicated by dash–dot lines. You can also change the LHS by dragging the
arrow (Ctrl+Click or Option+Click in a Mac) to another species.

Interpreting a model from its diagram

The next figure shows an example of a block diagram of another model and
interpretations from looking at the graphical semantics.

There are three reactions in this model. Species x, y1, and y2 are catalysts, that is, both
reactants and products, and z is a product. The amount of species y1 is being modified by
an event. Different contextual icons above some blocks indicate:

• The amount of species z is being increased by a dose.
• There is an error with an initial assignment rule.
• The compartment has constant volume.

Making the diagram clearer

When there are multiple references to the same quantity, multiple lines are connected to
the quantity block. This can cause the diagram to look cluttered. To make the diagram
clearer, you can split the block, that is, create copies of the same block, so that each
reference is connected to each copy of the block. You can also clone a block to add

1-26

 Model Views

another use for it. For instance, you can first clone a species block that you know will be
referenced in multiple expressions. Then use each clone in each expression as you build
the model.

SimBiology lets you clone or split a species block. To do so, first select the block. Then
select Split or Clone from the drop-down menu of the Split button on the Block tab.
Event blocks can only be split but not cloned. The next figure shows an example where
a species (s2) is referenced by a repeated assignment rule and event, and splitting the
block creates a copy for each reference. Copied blocks are then marked by a contextual
icon to indicate that they have been cloned.

You can also hide blocks to avoid clutter. To hide a block, right-click it, and select Hide
Block from the context menu. By default, blocks that represent constant parameters are
hidden. Hidden blocks can be shown by selecting Hidden Blocks on the Block tab.

Browser

The browser supplements the diagram by providing a table of model elements that shows
the relationships between quantities and expressions. You can edit these elements in the
browser or add new quantities or expressions by dragging and dropping blocks from the
block library panel onto the browser. If you make a change in the browser, the diagram is
automatically updated.

You can view the model elements shown in the browser by quantities or expressions. In
the quantities view, the browser shows all quantities as well as expressions and doses

1-27

1 SimBiology Desktop

that are modifying each quantity. Alternatively, in the expressions view, you can see all
expressions as well as quantities that are referenced by expressions. To switch between
the two views, select View > By Quantities or View > By Expressions on the Model
tab.

View By Quantities

The quantities view shows a table of quantities and expressions that are modifying them.
Use this view to check the values of quantities and if they are being modified by other
expressions such as events or assignment rules. You can also see the right-hand-side, of
each modifying expression. To display quantity units, select Tools > Show Quantity
Units on the Model tab. The check box next to each expression indicates whether the
expression is active and used during simulation.

You can model biological variability using a modeling element called variant. A variant is
a collection of quantities with alternative values. For instance, in the above example, you
can have one set of parameter values such as the elimination rate (ke) and degradation
rate (kdeg) for each antibacterial drug.

The browser shows a variant column for each variant of a model. For instance, a variant
named Vancomycin is shown in the next figure. You can edit each quantity value by
double-clicking it. When there are multiple variants, you can display a subset by clicking
Select Variants on the Model tab. To add a variant, drag and drop a variant block from
the block panel onto the browser.

If there are expressions for which the left-hand-sides are not defined, these expressions
are listed under the section named Undefined. For example, in the next figure, the
initial assignment rule_2 is modifying a quantity p2 that is not defined yet in the model.
You can right-click the undefined quantity and define it as a species, parameter, or
compartment.

Before running any analysis task, SimBiology prepares a model for simulation and
updates the quantity values according to the variant values, assignment rules, and
doses. For details, see “Model Simulation” on page 4-2. You can check if the quantity
values are initialized as you expect by checking the initial conditions of the task. To
see the initial conditions, first, select Show Tasks on the Model tab. Then select a
task in the task toolbar. For instance, in the following figure, the initial conditions of a
simulation task is shown. In this task, a variant called Vancomycin and a dose called
dose_1 have been selected to apply to the model during simulation. The concentration
of Drug_Central at the beginning of the simulation is 0.25, compared to the model value
0.0. The value is updated because, at simulation time = 0, SimBiology evaluates the

1-28

 Model Views

initial assignment rule_1 that initializes Drug_Central to 0.25*MIC. Since the variant
Vancomycin has been selected, the alternate values stored in it, namely0.5 and 0.86 for
kdeg and ke, are used instead of model values.

Since a dose is applied to species Drug_Biophase at time = 0, the browser displays the
total amount of the species, that is, the initial condition value of the species plus the dose
amount. For instance, in the next figure, the total amount of species Drug_Biophase after
applying the dose is 0.1. Alternatively, you can view the initial value and dose amount
separately by selecting Tools > Task Initial Conditions Options > Show the dose
amount separate from the initial condition value from the Model tab.

1-29

1 SimBiology Desktop

Defining or updating a quantity value using mathematical equations. The
equations can take the form of initial assignments, assignments during the course of

1-30

 Model Views

a simulation (repeated assignments), algebraic relationships, or differential equations
(rate rules). For details, see rules on page 2-23. In the following example, the
concentration of Drug_Central at time = 0 is defined by an initial assignment equation,
that is, Drug_Central0 = 0.25*MIC. The next figure shows how the browser displays
the assignment rule in relation to the species Drug_Central.

Drag and drop the initial assignment rule block onto the species Drug_Central. The rule
block appears as a separate row below the species. Double-click the RHS of the equation
to edit it.

Incorporating sudden changes in model behavior. You can model sudden changes
in model behavior based on a specified condition by using a modeling element called
event. In the following example, you want to set the concentration of Drug_Central at
time = 5 to another factor of MIC as well as the parameter value of the elimination rate
constant ke. Specifically,

if (time >= 5)

 Drug_Central = 0.35*MIC;

 ke = p1*Drug_Biophase;

where p1 is another parameter.

The next figure shows how the browser displays the event.

1-31

1 SimBiology Desktop

Drag and drop the event block onto the species Drug_Central. An event appears as a
separate row below the species. To add the second event function, right-click the event
and select Add EventFcn. Double-click the event trigger or RHS of an event function to
edit.

Increasing a species amount using doses. You can model the increase in the amount
of a species due to a stimulus such as an oral or intravenous administration of a drug.
To model such an increase in a species amount, use the modeling element called dose on
page 2-42. In the following example, the concentration of species Drug_Biophase is
being increased by a dose.

1-32

 Model Views

Drag and drop a dose block onto the target species. A dose appears as a separate row
below the species. To edit the dose amount, double-click the table icon. In this example,
the concentration of species Drug_Biophase is being increased by a schedule dose dose_1.

View by Expressions

In the expressions view, you can see all expressions of a model grouped by their types
such as reactions, assignment rules, and events. It shows how each expression is defined
and the relationship between each expression and quantities. The check box next to each
expression indicates whether the expression is active and used during simulation.

You can expand each reaction in the browser to configure its properties, such as reaction
rate, kinetic law, quantities referenced by the reactions, and quantity values. You can
define your own reaction rate or use a predefined rate that follows a particular reaction
kinetics such as mass action.

A built-in kinetic law in SimBiology specifies a rate law that defines the reaction rate.
Specifically each law has a predefined reaction rate containing parameters and species
that need to be mapped to the corresponding model quantities to determine the final
reaction rate. The browser displays the mapping information in parentheses next to a
quantity. For instance, if a parameter kf is used as the forward rate parameter in the
reaction rate, the browser displays kf(Forward). In case you map incorrectly, you can
reset the mapping by right-clicking the quantity and selecting Remove Kinetic Law
Mapping.

The kinetic law for a newly added reaction is configured to MassAction by default, and
the desktop automatically creates and maps the species and parameters needed by the

1-33

1 SimBiology Desktop

reaction rate. For other kinetic laws, only parameters are created and mapped. You need
to create and map the species manually. To change the default kinetic law and reaction
building settings, select Tools > Reaction Building Preferences on the Model tab.

This view also displays the assignment rules grouped according to their types such as
initial assignment, repeated assignment, rate rule, and algebraic rule. For each rule,
you can see its left-hand-side (LHS) and right-hand-side (RHS). The LHS is the quantity
that is being modified by a rule, except for the algebraic rule. The algebraic rule takes
the form 0 = Expression, and the rule is specified as the Expression. For details, see
“Definitions and Evaluations of Rules” on page 2-23.

This view also shows events. For each event, its trigger and event functions are grouped
together. Each trigger is started with the word if followed by an expression such as if
time>=3. You can also configure the LHS and RHS of each event function.

In addition to all the expressions, you can also see doses on page 2-42 that are
grouped into either schedule doses or repeat doses. For each dose, the corresponding
dosed species, that is, dose target, is shown right next to it. You can double-click the dose
icon to edit all dose properties or the table icon to edit just the dose schedule.

The following figure shows a model open in the expressions view of the browser.

1-34

 Model Views

Adding and configuring reactions. There are three reactions in this example.
Suppose the first and second reaction follow the mass action kinetics and the third
reaction follows the Michaelis-Menten kinetics. For illustration purposes, the
configuration of reaction1 and reaction3 is described below.

The following figure shows the details of reaction1. It follows the mass action kinetics
with the reaction rate kdeg*Central.Drug_Central.

1-35

1 SimBiology Desktop

To add a reaction, drag and drop a reaction block onto the browser. You can then enter
the reaction string by double-clicking the default null -> null string. Since there are
species in two compartments, qualify the species name with the compartment name. For
example, Central.Drug_Central indicates that the Drug_Central species is inside the
Central compartment. By default, the reaction’s kinetic law is configured to MassAction.
The parameter kf is automatically created and mapped to the forward rate constant of
the reaction rate. If you want to use a different parameter, you can change it by double-
clicking kf and entering the name of another parameter such as kdeg. You can then
delete the parameter kf which is no longer used in the reaction rate.

The following figure shows the details of reaction3 that is configured to follow Michaelis-
Menten enzyme kinetics with the reaction rate Vm*S/(Km+S).

Drag and drop a reaction block onto the browser. By default, it uses the mass action
kinetic law. The parameter kf is automatically created and mapped to the forward
rate constant. To specify the reaction to follow Michaelis-Menten kinetics, double-

1-36

 Model Views

click the row labeled MassAction and select Henri-Michaelis-Menten. SimBiology
automatically updates the reaction rate to Vm*S/(Km+S). The parameters vm and km
are also automatically added and mapped to Vm and Km, which are the parameters
referenced in the reaction rate. However, the S species referenced in the reaction rate is
not mapped yet as indicated by a dotted species block. Double-click the (S) row to enter a
model species that corresponds to the species S. The reaction rate is then automatically
updated using the selected species. To avoid confusion, you may delete the parameter kf,
which is no longer used in the reaction rate.

Adding and configuring assignment rules. In this example, there are two initial
assignment rules on page 2-23. The first initial assignment rule_1 initializes the
concentration of species Drug_Central. The second initial assignment rule_2 initializes
an undefined quantity p2.

The next figure shows how the expressions view displays such assignment rules.

Drag and drop the initial assignment rule block onto the browser. Define the LHS of the
rule by double-clicking the string null and entering the name of a quantity that the rule
is modifying. Double-click the RHS of the equation to edit it. If the LHS of the rule is
referring to a quantity that is not yet defined in the model, such as p2 in this example,
right-click the undefined quantity and select Define Quantities to define it as a species,
parameter, or compartment.

Adding and configuring events. In this example, there is one event event_1 with two
event functions changing the concentration of species Drug_Central and parameter ke
respectively. Specifically,

if (time >= 5)

1-37

1 SimBiology Desktop

 Drug_Central = 0.35*MIC;

 ke = p1*Drug_Biophase;

where p1 is a parameter.

The next figure shows how the expressions view displays the event.

Drag and drop the event block onto the browser. Double-click the default trigger if
time>=1 to edit it. The default event function, null = 0.0, is listed below the trigger.
Double-click its LHS and RHS to edit. To add more event functions, right-click the event
and select Add EventFcn.

Adding and configuring doses. You can increase the amount or concentration of a
species using a dose during simulation. In this example, the concentration of species
Drug_Biophase is being increased by a schedule dose dose_1. The next figure shows how
the expressions view displays the dose.

1-38

 Model Views

Drag and drop a dose block onto the browser. Define the dosed species by double-clicking
the LHS of the table icon. Double-click the dose icon to edit all dose properties or the
table icon to edit just the dose schedule.

Block Library Panel

The block library panel contains blocks from one or more block libraries. SimBiology
provides a default block library which contains blocks that represent all modeling
elements that you can use to build models. You can also create a library of custom blocks
with different block appearance settings. For instance, you can customize to a receptor
protein to have a different block shape or color than other species whenever you use it in
the diagram. For details on the SimBiology libraries, see “Libraries” on page 1-51.

You can drag and drop most blocks from the panel to both the browser and diagram, and
there are some blocks that can be dropped only in the browser, not in the diagram. Some
blocks do not appear as blocks but as contextual icons in the diagram. For instance, a
dose block appears as a contextual icon above a species block that is being dosed. The
following table summarizes the behaviors of different built-in block types.

Block
Name

Block
Graphics

Drag
and
Drop
onto
the
Browser

Drag
and
Drop
onto the
Diagram

Block
appears
as

Description

Species Yes Yes Block Quantity that participates in expressions, such
as reactions.

Compartment Yes Yes Block Physically bounded region that contains species
in a model. All models must have at least one
compartment and all species in a model must
belong to a compartment. A compartment
can also belong to another compartment. For
instance, a compartment that represents a
cell can contain other cellular components
such as mitochondria and nucleus as separate
compartments within the cell compartment.

Parameter Yes Yes Block Quantity that is referenced by expressions. For
instance, you can use it to define a rate constant
of a reaction.

1-39

1 SimBiology Desktop

Block
Name

Block
Graphics

Drag
and
Drop
onto
the
Browser

Drag
and
Drop
onto the
Diagram

Block
appears
as

Description

By default, if you drop a parameter block
onto the browser or diagram, it is available
to all expressions including reactions. This
type of parameter is called a model-scoped
parameter and listed under the Model Scoped
Parameters section in the quantities view of
the browser.

Another type is called a reaction-scoped
parameter, where the parameter is only
available to one particular reaction. These
parameters are listed under the Reaction
Scoped Parameters section. To add a reaction-
scoped parameter, switch to the expressions view
of the browser and then drop a parameter block
onto a particular reaction.

To switch between the two types, right-click a
parameter block and select Change Scope.

Reaction Yes
(only
in the
expressions
view
of the
browser)

Yes Block Process such as a transformation, transport,
or the binding and unbinding of reactants and
products.

Initial
assignment

Yes Yes Block Expression to assign the initial value of a
quantity. For example, an initial assignment
rule s40 = 0.75 means that the amount of
species s4 is initialized to 0.75 at simulation
time = 0.

1-40

 Model Views

Block
Name

Block
Graphics

Drag
and
Drop
onto
the
Browser

Drag
and
Drop
onto the
Diagram

Block
appears
as

Description

Repeated
assignment

Yes Yes Block Expression to assign a quantity value repeatedly
during simulation. For example, a repeated
assignment rule x = y1 + y2 means that the
amount of species x is repeatedly assigned to the
total amount of species y1 and y2 throughout the
simulation.

Rate rule Yes Yes Block Differential equation to specify the time
derivative of a model quantity. For example,
a differential equation x = k * (y + z)
specifies that the time derivative of species x
(dx/dt) is evaluated continuously during the
simulation according to the equation.

Algebraic
rule

Yes Yes Block Expression to specify mathematical constraints
on one or more quantities that must hold during
simulation. For example, if you have a mass
conservation equation such as s_total = s1 +
s2, write the corresponding algebraic rule as s1
+ s2 – s_total.

Event Yes Yes Block Discrete transition in a quantity value. This
discrete transition occurs when a specified
condition becomes true.

Repeat
dose

Yes No Contextual
icon
above
a
species
block
that
is
being
dosed

Modeling element that increases the value of
a species by a certain amount at predefined
time intervals. To add a dose to a species, drag
and drop the dose block onto the species in the
quantities view of the browser. Double-click the
dose icon to edit the dose value.

1-41

1 SimBiology Desktop

Block
Name

Block
Graphics

Drag
and
Drop
onto
the
Browser

Drag
and
Drop
onto the
Diagram

Block
appears
as

Description

Schedule
dose

Yes No Contextual
icon
above
a
species
block
that
is
being
dosed

Modeling element that increases the value of a
species by certain amount at specific time points.
To add a dose to a species, drag and drop the
dose block onto the species in the quantities view
of the browser. Double-click the dose icon to edit
the dose value.

Variant Yes
(only
in the
quantities
view
of the
browser)

No Column
in
the
Browser

Modeling element that is a collection of
quantities with alternate values from the
original model values.

Table View

This view presents a model in a tabular format, and there are many tables that organize
the model information differently. For instance, the Table Overview gives an overview of
the entire model by showing the complete list of model quantities, expressions, and some
of their properties. There are also tables dedicated to each type of quantity or expression,
doses, and variants, and these individual tables provide more information specific to each
type.

You can open different tables from the Open drop-down list to edit and add elements to
each table. For instance, you can enter a reaction string such as y2 -> z in the Table
Overview or Reactions table.

The context menu, which you can open using a right-click, provides options to customize
the table and open other modeling tools. For instance, to check which expressions are

1-42

 Model Views

referencing a quantity, right-click the quantity and select Show Usages from the
context menu.

Equations View

This view describes a model in the form of mathematical equations. It shows a system
of ordinary differential equations (ODEs) that represent a model. Specifically, the
ODEs are derived from model reactions and define what quantities are being integrated
during model simulation. For details about the simulation process and how SimBiology
constructs ODEs, see “Model Simulation” on page 4-2.

You can use this view to help debug a model. For instance, you can check the initial
conditions of ODEs to see if the quantity values are initialized as you expect. You can
also see how SimBiology corrects the dimensions of ODEs by dividing the right-hand-

1-43

1 SimBiology Desktop

sides of equations with compartment volumes. The volume-correction information
can help debug unexpected simulation results, especially when you have a multi-
compartment model with different compartment volumes. You can also compare the
ODEs to the ones from a publication to reproduce the reported results.

The initial conditions of ODEs are used as starting points to simulate the dynamic of a
model. The initial conditions are the quantity values at simulation time = 0. The Value
at Time Zero column of the view shows these values. You can check this column to
see if the quantity values are initialized as you expect based on initial assignment and
repeated assignment rules, and debug the rules as necessary. For details about how
SimBiology evaluates the assignment rules, see “Model Simulation” on page 4-2.

The next figure shows a model open in the equations view, which has the Equations
and Initial Conditions sections. The Equations section contains the expressions and
ODEs that SimBiology evaluates during model simulation. The Initial Conditions
section contains the quantity values at simulation time = 0. Since initial assignments
are evaluated just once at time = 0, they are only accessible in the Initial Conditions
section via a contextual icon. Repeated assignments are evaluated both at time = 0 and
during simulation. Hence they are shown in the Equations section and also indicated by
contextual icons.

1-44

 Model Views

In this model, the concentration of drug in the central compartment Drug_Central is
initialized to 0.25*MIC, resulting in the amount of 0.25 as shown in the Value at Time
Zero column. To see the initial assignment equation, click the contextual icon next to
Drug_Central. In addition, a repeated assignment equation sets the value of parameter
kdeg to p1*1.5, resulting in the value of 0.75. You can see the equation listed under the
Repeated Assignments section. The desktop also shows a contextual icon next to the
parameter kdeg to indicate the application of the assignment rule.

To perform an analysis on a model such as simulation or sensitivity calculation, you need
to run a task. You can specify which doses and variants to use for the analysis in the
task configuration. When you select a task, the desktop applies the doses and variants
specified in the task, hence updating the corresponding quantity values in the Value at
Time Zero column. The dose is also added to the Equations section. The next figure

1-45

1 SimBiology Desktop

shows the equations view of the same model with a task selected. In this example, the
task is a simulation task that uses a dose dose_1 to increase the concentration of drug in
the Biophase compartment Drug_Biophase at simulation time = 0.

The grayed-out numbers in the Model Value column indicates the quantity values that
have been changed due to the task configuration. The model value and the value at time
zero are considered different if the relative tolerance between the values is greater than
10-12, that is, |x-y|/min(|x|,|y|) > 1e-12 where x is the model value and y is the
value at time zero.

The Fluxes section of the equations view contains reaction fluxes for all reactions
in the order they appear in the model. The name of each reaction flux has the prefix
ReactionFlux followed by a number, such as ReactionFlux1, meaning the reaction
flux for the first reaction of the model. Reaction fluxes are equivalent to reaction rates

1-46

 Model Views

except that fluxes are always in the dimension of amount/time. Hence, if the dimension
of a reaction rate is in concentration/time, the expression of reaction flux is equal
to the reaction rate multiplied by a compartment volume. SimBiology uses the name
of a compartment to represent its volume in reaction fluxes and ordinary differential
equations (ODEs). For details, see “Deriving ODEs from Reactions” on page 4-4. The
next figure illustrates an example where ReactionFlux1 is volume-corrected.

While preparing a model for simulation and other analyses, SimBiology performs
dimensional analysis to make sure the dimensions of the left-hand-side (LHS) and
right-hand-side (RHS) of each ODE are consistent. The LHS of each ODE is the time-
derivative of a species, and the RHS is defined using reaction fluxes. If you specify
no units, the default dimension for a species is concentration, and the default
dimension for a flux is amount/time. For such cases, SimBiology divides the RHS by a
compartment volume to make the dimensions of LHS and RHS consistent. For details,
see “Deriving ODEs from Reactions” on page 4-4. You can see all the ODEs in the
ODEs section of the view as shown in the next figure. In this example, SimBiology uses
the default dimensions for species and fluxes. Hence each RHS of ODE is divided by
the corresponding compartment volume Central or Biophase for volume-correction. By
default, the flux names are used in ODEs. To use the expressions explicitly instead of
using the flux names, select Tools > Embed fluxes on the Model tab. The following
figure shows ODEs after fluxes have been embedded.

1-47

1 SimBiology Desktop

References

[1] Nielsen, E. I., Viberg, A., Lowdin, E., Cars, O., Karlsson, M.O., and Sandstrom,
M. (2007) Semimechanistic pharmacokinetic/pharmacodynamic model for
assessment of activity of antibacterial agents from time-kill curve experiments.
Antimicrobial Agents and Chemotherapy. 51:128-136.

More About
• “General Workflow” on page 1-2
• “Modeling Workflow” on page 1-19
• “Analysis Workflow” on page 1-55

1-48

 Setting Preferences

Setting Preferences

Preferences are the desktop settings that apply to all projects. They remain persistent
across sessions of MATLAB and the desktop. To access and set preferences, select
Preferences on the Home tab.

Desktop display — has options to choose which columns to display for tables shown in
the desktop.

Model Building — lets you select which model view to show by default when you
open a model. The Diagram view is the default. Other options are Table Overview
and Equations view. You can also change the default options related to configuring
reactions. For instance, you can change the default kinetic law or disable the option to
create parameters automatically. For details about configuring reactions, see “View by
Expressions” on page 1-33.

Indicators — lets you choose whether to show indicators above the blocks or next to a
quantity in a table. For details, see “Message Indicators” on page 1-9 and “Contextual
Icons” on page 1-13.

Tasks — has options to choose the layout of the Task Editor and change task settings.

Report Generator — lets you select the output format of the report, type of images, and
location of images after you have run the Generate report task.

Search — lets you choose in which model view a search item is displayed when you
double-click it from the search results. The diagram view is the default.

History — lets you choose the number of most recently used models, projects, and data
files to show when you click Recent Files in the content panel. You can also specify the
number of recent searches that show up when you select View Search History from the
search drop-down menu.

Confirmation Dialogs — lets you specify whether or not the desktop displays
confirmation dialog boxes before some desktop actions. For instance, a warning dialog is
displayed by default when you try to delete data from a project.

More About
• “General Workflow” on page 1-2
• “Modeling Workflow” on page 1-19

1-49

1 SimBiology Desktop

• “Libraries” on page 1-51

1-50

 Libraries

Libraries

The SimBiology libraries are collections of built-in components that you can use to build
and analyze models. For instance, you can use built-in units such as mole or molecule
as amount units for species. As you perform model analyses, you can use built-in plots
such as box plot or residuals plot to display the analysis results. You can also add custom
components to any library. For instance, you can define a custom unit or block and use
it as you build models. Similar to preferences, libraries are saved across sessions of
MATLAB and the SimBiology desktop. Libraries are available for all projects and are not
part of any one project. You can also export libraries and share with others by selecting
Export All Libraries from the action menu. Alternatively, when you save and share a
project, the libraries are also saved with it.

To open a library in the SimBiology desktop, select Content > Libraries and double-
click a library. For instance, the following figure shows the kinetic laws library with all
the available built-in kinetic laws.

1-51

1 SimBiology Desktop

Kinetic Laws Library

As you configure model reactions, you can use predefined reaction rates that follow
particular kinetics such as mass action or Michaelis-Menten. SimBiology provides a list
of such predefined rates in the Kinetic Laws library.

The kinetic law for a newly added reaction is configured to MassAction by default, and
SimBiology automatically creates and maps the species and parameters needed by the
reaction rate. For other kinetic laws, only parameters are created and mapped. You need
to create and map the species manually. For details about configuring reaction rates in
the SimBiology desktop, see “View by Expressions” on page 1-33. Use the Unknown
kinetic law to define a custom reaction rate with its own parameters. You must define
and add the species and parameters needed by the custom rate.

1-52

 Libraries

Note: The MassAction and Unknown kinetic laws can have different simulation
results even when the reaction rate is the same. This can happen when you have a
reversible reaction with species in different compartments. The difference in simulation
results is because of the volume-scaling performed by SimBiology during the dimensional
analysis. For details, see “Deriving ODEs from Reactions” on page 4-4. Specifically,
for MassAction, SimBiology uses corresponding compartment volumes to multiply
the forward and reverse rates. However, for Unknown and other built-in kinetic laws,
SimBiology multiplies the entire rate by only one compartment which contains the
reactants. To see exactly what compartment volumes are used for scaling, open the
“Equations View” on page 1-43 and check the ODEs section.

Units Library

It provides a collection of units that you can use. The library displays the unit
composition for each unit. The Menu Display column controls how each unit is
displayed when selecting quantity units in the Table or Diagram views. For instance,
suppose you have a custom unit with the unit composition mole/(liter*second).
Depending on what you select in the Menu Display, SimBiology displays it differently in
the Units column of Table Overview.

Unit Prefixes Library

It provides a list of all the available unit prefixes.

1-53

1 SimBiology Desktop

Blocks Library

It contains blocks that you can use to build models interactively. SimBiology provides a
default block library called ModelBuilding that contains built-in blocks representing
all modeling elements. In addition to built-in blocks, you can create custom blocks with
different appearances. For instance, you can customize a receptor protein to have a
different block shape or color than other species. You can use these blocks to build a
model graphically in the diagram view. For details about different built-in block types,
see Built-in Blocks.

More About
• “General Workflow” on page 1-2
• “Modeling Workflow” on page 1-19
• “Analysis Workflow” on page 1-55
• “Setting Preferences” on page 1-49

1-54

 Analysis Workflow

Analysis Workflow

1-55

1 SimBiology Desktop

SimBiology lets you analyze models of dynamic systems. For instance, you can simulate
various biological systems such as signaling pathways and explore what-if hypotheses.
You can investigate system dynamics and guide experimentation using parameter
sweeps and sensitivity analysis. Various dosing regimens can be evaluated to assess
different combination therapies. In addition, you can use experimental time course data
to estimate model parameters using nonlinear regression or mixed-effects techniques.

To perform these analyses, the SimBiology desktop provides built-in MATLAB scripts
with a user interface called tasks. Each task is open and displayed in the task editor,
where you can configure the task’s settings such as specifying how long the simulation
runs. The desktop automatically checks for errors and warnings as you configure the task
and flags any issues using message indicators.

As a task is running, it displays a plot that shows the values of model quantities over
time. The plot is updated live as the model is simulated. You can also add experimental
data to the plot to compare with simulation results.

The desktop provides interactive model exploration tools that let you vary parameter
values, initial conditions, and dosing schedules. For instance, you can simulate the model
and interactively vary the value of a parameter of interest. The live plot automatically
updates for the change, and you can check the plot to see if the simulation result using
the new parameter value is close to experimental data. Then you can use the new value
as an initial estimate when you perform parameter estimation.

Once the task finishes, you can visualize the results using different MATLAB plots.
The desktop provides a default set of plots and selects the plots that are appropriate for
the specific task being run. You can add additional plots to gain more insight into your
results. You can export the results to MATLAB workspace or share with others by saving
the results in a MAT or Excel® file.

The desktop provides the equivalent MATLAB script for each task. You can use these
scripts as templates and modify them as necessary. For instance, you can modify the
parameter scan task for more flexible sampling options using other MATLAB functions.
You can write such scripts from within the task editor by creating a custom task, which
is saved with the project.

You can also create standalone applications for model distribution and simulation.
Suppose you want to share your model and analysis with non-modelers using a simple
standalone application. You, as a modeler, can mask the details of the model and decide
what model information to expose to other non-modelers. With the desktop you can build
such an application that end users can use to vary model parameters, modify dosing

1-56

 Analysis Workflow

schedules, visualize the dynamics of key response variables, and save the results. For
details, see “Deployment”.

More About
• “General Workflow” on page 1-2
• “Modeling Workflow” on page 1-19
• “Task Editor” on page 1-58
• “Configuring Tasks” on page 1-63

1-57

1 SimBiology Desktop

Task Editor

Each task in the SimBiology desktop opens within the task editor, where you can edit
the task settings, explore model parameters, and visualize live simulation results. If
there are multiple tasks, each task opens in its own tab within the editor. The editor is
composed of the Task, Explorer Tools, and Live Plots. You can display each of them
by selecting the appropriate toggle button in the Editor tab. The tab also contains other
options to add new tasks, view equivalent MATLAB code of the task, create standalone
applications, and run the task.

The Task gives you a graphical way to define what is executed when you run a task.
Suppose you have a variant that has alternate set of parameter values for a cancer
patient and you want to simulate the model using those values. You can specify the
variant in the Variants to Apply section of a simulation task and run it. For more
details about each section of a task, you can hover over the information icon to see its
context-sensitive help. As you configure the task, the desktop checks for any errors or
warnings and flags them using message indicators. For details, see “Configuring Tasks”
on page 1-63.

The Explorer Tools let you explore parameter values, initial conditions, and dose
schedules with sliders. These interactive tools let you quickly iterate through values
without modifying the base model. For instance, you can vary a model parameter value
and find out an initial value that generates simulation results closer to experimental
observations. Then you can use the value as an initial estimate when you perform
parameter estimation. You can also calculate statistics on simulation results using
mathematical expressions to get better insight into the results. For instance, if you want
to calculate an AUC (area under curve) of the concentration-time curve of a drug, you can
write an expression such as trapz(drug).

The Live Plots show the live simulation results as the task is running. You can also add
experimental data points to compare with simulation results or define a mathematical
expression to plot by right-clicking the live plot.

The tools for working with Live Plots and Explorer Tools are also listed in the
Explorer tab. For instance, you can select which quantities or doses to explore, overlay
simulation results in the live plot, or add new plots.

1-58

 Task Editor

More About
• “Analysis Workflow” on page 1-55
• “Built-in Tasks” on page 1-60
• “Configuring Tasks” on page 1-63
• “General Workflow” on page 1-2
• “Modeling Workflow” on page 1-19

1-59

1 SimBiology Desktop

Built-in Tasks

The desktop provides the following built-in tasks that you can use to analyze models.

Task
Name

Description Shows
Live
Plots

Supports
Deployment

Command-
line
Function

Simulate
model

Simulates the dynamic behavior of a given model using a
variety of deterministic and stochastic solvers.

Yes Yes sbiosimulate

Fit
data

Estimates model parameters by fitting the model to time-
course data using nonlinear regression or nonlinear mixed-
effects (NLME) techniques. You can fit data to a single
individual to predict group-specific values or simultaneously
fit all groups (pooled fit) to estimate a single set of values.

Note: For nonlinear mixed-effects (NLME) estimation,
Statistics and Machine Learning Toolbox™ is required.
For nonlinear regression, Optimization Toolbox™, Global
Optimization Toolbox, and Statistics and Machine Learning
Toolbox are recommended.

No.
The
progress
plot
is
shown
instead.

No sbiofit

for
nonlinear
regression,
sbiofitmixed

for
NLME
modeling

Calculate
conserved
cycles

Calculates a complete set of linear conservation relations
for species in a model and returns a list of species that are
conserved in the system, regardless of reaction rates.

No No sbioconsmoiety

Calculate
sensitivities

Computes the time-dependent derivatives of one or more
species relative to either model parameters or species initial
conditions. Calculating these time-dependent sensitivities
helps you determine what effect the parameters or species
have on another species or parameter.

Yes No sbiosimulate,
SimFunctionSensitivity

object

Run
scan

Performs a parameter scan that lets you explore the model
dynamics given different values of model quantities and
doses.

Note: Statistics and Machine Learning Toolbox is
recommended for more sampling options.

Yes No sbiosimulate

1-60

 Built-in Tasks

Task
Name

Description Shows
Live
Plots

Supports
Deployment

Command-
line
Function

Run
scan
with
sensitivities

Performs a parameter scan while calculating sensitivities of
model quantities. For each scanned value, you can see the
corresponding time-dependent sensitivities of quantities with
respect to the parameter of interest.

Note: Statistics and Machine Learning Toolbox is
recommended for more sampling options.

Yes No sbiosimulate,
SimFunctionSensitivity

object

Run
ensemble
simulation

Performs a series of stochastic simulations of a model. When
the behavior of a model is stochastic in nature, a single
simulation run may not provide enough insight into the
model. Use this task to perform a number of simulations.

Yes No sbioensemblerun

Run
group
simulation

Simulates a model for each group in the data. For example,
the grouped data can contain measurements of drug plasma
concentration at different times for multiple patients and
dosing information for each patient. This task performs a
simulation for each patient using the corresponding dosing
information from the data and compares the simulation
results to the data visually in the live plots section.

Yes No sbiosimulate

Create
custom
analysis

Lets you create a task for custom analysis using MATLAB
language. For instance, you can write a script to identify the
optimal dosing strategy that suppresses tumor growth while
satisfying safety constraints.

No No —

Search
model(s)

Lets you search models for keywords. No No sbioselect

Generate
report

Creates a report of the model and analysis results. You can
select various information to be included in the report such
as the diagram representation of the model, model equations,
or imported data.

No No —

More About
• “Analysis Workflow” on page 1-55
• “Task Editor” on page 1-58

1-61

1 SimBiology Desktop

• “Configuring Tasks” on page 1-63

1-62

 Configuring Tasks

Configuring Tasks

For each task, you can configure model-related settings such as the model to simulate,
simulation-related settings such as the simulation stop time, and task-specific settings
such as values to scan in a parameter scan task.

As you configure these settings, the desktop checks for errors and warnings and
flags them using message indicators. You can hover over the indicators to get more
information about the errors or warnings. More information about each section is
described in the context-sensitive help of each section. You can open it by hovering over
the information icon next to each section.

When you are selecting model elements such as parameters to estimate or doses to use
during the analysis, you can use the Component Palette tool that provides a complete
list of model quantities, doses, and variants. You can open the tool from the Editor tab
and drag and drop model elements onto corresponding task sections. You can also use the
down arrow key from within the table of each section to select model elements. In some
of the tables, each row has a check box in the first column. When the box is checked, the
corresponding row item is active and used during the analysis. You can use the context
menu of each table for more options such as showing a quantity in the diagram view.

Configuring Model-Related Settings

Each task lets you specify a model to analyze. You can also specify which doses and
variants to use during the model analysis. Suppose that you have two different sets of
parameter values for the normal and cancer patients stored in separate variants. You
can specify which variant to use during simulation by selecting it in the Variants to
Apply section of the task. Similarly, different doses can be selected in the Doses to
Apply section to evaluate various dosing regimens or combine dosing schedules to assess
different combination therapies.

Configuring Simulation-Related Settings

Each model has the default simulation settings associated with it. These settings include
simulation time options, solver options, compile options, and data logging options. You
can access these options by selecting Simulation Settings from the Editor tab of the
task editor. When you change these simulation settings, it affects every task that is using
the same model.

1-63

1 SimBiology Desktop

It is possible to overwrite some of the default simulation settings for certain tasks. These
settings are the simulation stop time, states to log, solver type, and log decimation. In the
corresponding section of a task, you can choose to use either the simulation settings value
or a custom value specific for the task only. If you select the custom value option, that
value is applied to the current task only and no other tasks.

Configuring Task-Specific Settings

Some of the tasks have unique settings that must be configured before the tasks can be
run.

Fit Data

This task lets you estimate model parameters by fitting the model to experimental
time-course data, using either nonlinear regression or nonlinear mixed-effects (NLME)
methods.

Consider grouped data containing measured drug concentrations at different times for
multiple individuals. You can estimate parameters for each individual or simultaneously
fit all individuals to estimate a single set of values. Select the Pool data check box in the
Estimation Method section to estimate one set of parameter values for all individuals.
This option is available for all methods except for the mixed-effects methods (nlmefit
and nlmefitsa).

In the Estimated Parameters section, you can select which parameters to estimate
and specify parameter transformations as needed. For example, some parameters
such as compartment volume and clearance are positive physical quantities, and log
transformation reflects the underlying physical constraint and generally improves fitting.
Use logit or probit transforms for parameters that have values from 0 through 1, such
as bioavailability. You can also specify the lower and upper bounds for each estimated
parameter for some of the estimation methods. For a list of methods that supports
parameter bounds, see “Supported Methods for Parameter Estimation” on page 4-60.

If your data contains any dosing information such as dose amount for each patient at
each dose time, use the Dosing Information section to define the mapping between
the dose column of the data and the corresponding model species that is being dosed. In
the table of the section, select the name of the dose variable (Dose Column Name), the
dosed species (Dose Component Name), and the type of dose on page 5-29 (Dose
Configuration).

1-64

 Configuring Tasks

You can map the measured or observed response data column (dependent variable) to
the corresponding model quantity in the Response and Error Model Information
section. For cases of multiple responses, SimBiology lets you specify an error model
for each response or one error model for all responses. There are four error models on
page 4-62, namely, constant, proportional, combined, and exponential. For a list of
methods that support multiple error models, see “Supported Methods for Parameter
Estimation” on page 4-60. In addition to these error models, you can also specify
weights for each response.

You can also customize some of the common settings of the selected estimation method
in Algorithm Settings. For instance, you can increase the maximum iterations if
the algorithm fails to converge within the default limit. You can specify additional
algorithm settings in Advanced Algorithm Settings. For example, if you want to
use the Levenberg-Marquardt algorithm for the lsqnonlin method, enter Algorithm
= 'levenberg-marquardt'. To see a complete list of all options for the selected
estimation method, click the hyperlink provided in the section.

For an illustrated example of fitting PK profile data using a least-squares method, see
“Estimate Pharmacokinetic Parameters Using SimBiology Desktop”.

For the mixed-effects problems on page 4-44, SimBiology lets you estimate population
parameters (fixed effects) while considering individual variations (random effects) using
nlmefit or nlmefitsa estimation methods (Statistics and Machine Learning Toolbox is
required). Consider grouped data containing measured drug concentrations at different
times for multiple individuals. The objective is to estimate population PK parameters,
such as volume of the central compartment Central and clearance Cl, and the random
effect of each individual. For the ith individual, the mixed-effects model can be described
as Centrali i= +q h

1 and Cli i= +q h
2 , where θ1 and θ2 are fixed effects and ηi is the

random effect of the ith individual. Random effects are assumed to be multivariate
normally distributed h

i
N~ (,)0 Y , where Ψ is the covariance matrix of random effects.

SimBiology represents the model as Central = theta1+eta1 and Cl = theta2+eta2
in Estimated Parameters. The drop-down menu of the Expression column displays a
list of available expressions for each parameter. You can also enter your own expression,
but the fixed effect names must always start with theta and random effect names must
start with eta.

You can define Ψ in Covariance Matrix Pattern of Random Effect Parameters.
Each check box indicates a variance or covariance parameter that is being estimated.

1-65

1 SimBiology Desktop

By default, SimBiology assumes no covariance among random effects, that is, uses a
diagonal covariance matrix.

You can also specify individual-specific covariates such as patient weight that linearly
relate to an estimated parameter in the Covariates section. In the table of the section,
select the name of covariate column from the data. SimBiology allows centering of
covariates to improve interpretability of the model. For instance, you may want to mean
center the weight of each patient to help interpret the fixed effects and compare results
with and without the covariate. If there are multiple covariates, you can standardize
each of them by using an appropriate scaling method that may help you compare these
covariates and select some of them.

Once you have defined a covariate, the task automatically updates the expression list for
each parameter in Estimated Parameters to include additional parameter-covariate
relationships, such as Cl = exp(theta2+theta3*tWeight+eta2). theta3 is the
fixed effect of weight on Cl and tWeight is the (transformed) weight. For details, see
CovariateModel.

Calculate Sensitivities

This task helps you investigate parameter effects on system dynamics. It lets you
calculate local, time-dependent sensitivities on page 4-27 of one or more species
with respect to parameter values and species initial conditions. Suppose that you want
to calculate the sensitivity of a receptor protein with respect to a model parameter
to see if the parameter has any influence on the receptor dynamics. You can specify
the receptor species as the sensitivity output (numerator) and the parameter as the
input (denominator) in the Sensitivities to Compute section. SimBiology lets you
specify species, parameters, and constant compartments as inputs (and species and
parameters as outputs) for sensitivity calculation. The computed sensitivities can be
normalized by selecting the appropriate method in the Normalization section. For
instance, if you want to normalize with respective to the sensitivity output only, select
the Half normalization. Select Full to make the data dimensionless. For details, see
Normalization. You cannot run the sensitivity analysis task on models that contain
events, algebraic rules, and non-constant compartments. For an illustrated example, see
“Identify Important Network Components from an Apoptosis Model Using Sensitivity
Analysis” on page 4-35.

Run Scan

This task lets you explore how a model behaves with different quantity values or repeat
dose information, namely, dose start times, amounts, rates, and intervals. The task

1-66

 Configuring Tasks

simulates a model multiple times, each time using different values for those quantities
or doses of interest. Suppose you want to explore how varying the value of a forward
rate parameter affects the final concentration of a product species. You can specify
the parameter in Values to Scan. Use the Values to Scan Defined With section to
specify what values to generate for scanning. You can define the values using a custom
MATLAB code. Alternatively, if you have Statistics and Machine Learning Toolbox, you
can generate values from multivariate normal distribution or latin hypercube sampling.

Run Ensemble Simulation

This task performs multiple simulations of a model using a stochastic solver on page
4-10. It lets you compare and analyze fluctuations in the behavior of a model over
repeated stochastic simulations. Because stochastic simulations rely on an element of
probability, sequential runs produce different results. Therefore, multiple stochastic runs
are often needed to determine the probability distribution of the simulation results. Use
the Number of Runs section to define the total number of stochastic simulations. If you
want all the runs to have a consistent time vector, the data must be interpolated using
the linear or zero-order hold method specified in the Interpolation section. By default,
the task saves the time and quantity data of each state at each simulation time step. You
can record the data less often by increasing the value of LogDecimation.

Run Group Simulation

This task lets you simulate each group or patient from grouped data. Suppose that the
data contain measurements of drug plasma concentration at different times for multiple
patients and dosing amount for each patient. You can use this task to simulate each
patient and compare the results to the experimental data.

In the Map Between Data and Model section, you must specify a grouping variable,
an independent variable, and a dependent variable (response). Map at least one response
data column (Dependent1) to the corresponding model quantity. Similarly, you can map
any dose column (Dose1) to the corresponding model species that is being dosed.

Once you start running the task, it applies any specified dose to the corresponding
species, and simulates each group. It plots the response data column against the
simulated values for the corresponding model quantity. As you compare the simulation
results to experimental data, you can further explore the model behavior under different
parameter values or species initial conditions using the Explorer Tools.

More About
• “Analysis Workflow” on page 1-55

1-67

1 SimBiology Desktop

• “Task Editor” on page 1-58
• “Built-in Tasks” on page 1-60
• “Running Tasks” on page 1-69

1-68

 Running Tasks

Running Tasks

The SimBiology desktop lets you analyze models of dynamic systems using tasks. Each
task is a MATLAB script with a user interface that performs an analysis on the model,
such as simulation, parameter estimation, or sensitivity calculation. You can configure a
task in the Task Editor. As you configure the task, the SimBiology desktop updates the
corresponding script automatically and lets you view the task code.

While a task is running, the desktop shows simulation results in the Live Plots area of
the Task Editor. By default the desktop shows a time plot, and the results are updated
live while the task is running. For certain tasks, in addition to the time plot, you can see
additional plots, such as a scan or sensitivity plot. You can customize these plots. For
instance, you can add experimental data points to compare with simulation results, or
select only a few quantities of interest to plot. For details, see “Configuring Live Plots” on
page 1-69.

You can further explore model behavior using the Explorer Tools, which let you alter
parameter values, initial conditions, and dose schedules. Each time you alter the value
of a quantity, the task automatically reruns using the new value, and you can see the
updated results in the Live Plots area. For details, see “Exploring Models” on page
1-72.

The desktop saves the task results as Last Run (task name - model name). Each
time you run the same task, the results are overwritten. You can save the results under
a different name to avoid overwriting them. The Explorer tab of the Task Editor has
options to save and export simulation data, or navigate to the Data panel. For details,
see Task Results.

Configuring Live Plots

While a task is running, the SimBiology desktop shows one or more plots in the Live
Plots area. For most tasks, a time plot of all quantities is shown by default. Depending
on the task, the desktop shows additional plots such as sensitivity or scan plots. You can
add more plots by selecting Add Plots from the Explorer tab.

You can configure what is plotted in each plot. For example, if you are interested in
plotting simulation data of a few quantities of interest, you can specify them by selecting
Define States to Plot > Plot State Data.

The desktop also lets you define a mathematical expression to plot by selecting Define
Math Data to Plot. The expression must be a MATLAB expression that uses any of the

1-69

1 SimBiology Desktop

legend names or time as variables. The expression must evaluate to a numeric value. For
instance, suppose that you have concentration–time curves of two species with the legend
names s1 and s2. You can add an average curve of the two by entering (s1+s2)/2 as an
expression.

You can add experimental data to the time plot to compare with the simulation results by
selecting Plot External Data > Add. You can select a data set that is in the MATLAB
workspace or load one from a file.

To configure axes and line properties of a plot, select Properties from the context menu
of the plot. For instance, you can specify a linear or log scale for the x- or y-axis of each
plot.

To highlight a line or data point of a simulated quantity in the plot, you can click its
name in the legend. You can also click a line or data point, and the corresponding legend
name is highlighted. Use this highlighting feature to look at the simulation data of
a specific quantity among many others, or to see which quantity corresponds to the
simulation data that you are interested in.

You can overlay results from each task run to compare simulation data. Select Overlay
Results from the Explorer tab. Then every time you run the task, the desktop plots
the results from the current run on top of the results from previous runs. For example,
suppose that you can have a set of values for immunological parameters of a healthy
person represented by a variant and a different set of values for a cancer patient
represented by another variant. You can then simulate the model with each variant and
overlay the predictions for both cases to see the changes in model behavior.

Each task shows one or more plots while it is running. Details on the plots for each task
are described in the following sections.

Simulation

This task shows a time plot of all simulated quantities. You can disable the automatic
creation of the time plot when you run the task in the Preferences > Tasks > Create
line plot in Task Explorer on Simulation Task run.

Calculate Sensitivities

This task shows a time plot and a sensitivity plot. The sensitivity plot is shown after the
task finishes running. The plot displays the time-dependent sensitivities to parameter
values and initial conditions as a bar graph. Use the context menu of the plot for more

1-70

 Running Tasks

options, such as sorting the values in an ascending or descending order. You can disable
the automatic creation of the sensitivity plot by clearing Preferences > Tasks > Create
sensitivity plot in Task Explorer on Sensitivity Task run completion.

Run Scan

This task shows a scan plot and a time plot. For each parameter scan, the desktop
performs a mathematical evaluation on the simulation data and returns a scalar value.
The scan plot plots this value versus the scan parameter. You can add more scan
plots by selecting Add Plot > Scan Plot on the Editor tab. Then you can define the
mathematical expression to evaluate by selecting Plot Math Data > Add.

You must define the expression as out = expression, and the expression must return
a scalar. In the scan plot, the evaluated results (out) are plotted on the y-axis and the
scan parameter on the x-axis. If you have multiple scan variables, you can select which
scan parameter is plotted on the x-axis. In the expression, you can refer to any quantity
by its name. If a quantity has an invalid MATLAB variable name, enclose it in square
brackets, such as [DNA polymerase+]. To check if the expression has any errors or
warning, click Verify.

You can disable the automatic creation of the scan plot by clearing Preferences > Tasks
> Create scan plot in Task Explorer on Scan Task run.

As an illustration, the scan plot shows the maximum value of the first quantity in
the time plot versus the scan variable. You can write custom MATLAB code to plot.
For instance, suppose Drug_Central is the name of a species that represents the
concentration of the drug in the system, and time is the simulation time variable. You
can plot the time point at which the drug concentration is at its maximum using the
following expression.

out = time(Drug_Central == max(Drug_Central));

Run Scan with Sensitivities

This task combines the Calculate Sensitivities and Run Scan tasks. It shows a scan
plot and time plot. As an illustration, the scan plot shows time-dependent sensitivities of
the first quantity with respect to the scan parameter. For details on how to configure a
scan plot, see “Run Scan” on page 1-71. You can disable the automatic creation of the
scan plot by clearing Preferences > Tasks > Create scan plot in Task Explorer on
Scan with Sensitivities Task run.

1-71

1 SimBiology Desktop

Run Group Simulation

This task shows a trellis time plot, where each subplot represents a group or an
individual. The plot shows the response data against the simulated values for each
group. If you have multiple responses, you can select responses to plot by selecting Edit
Properties on the Explorer tab.

Fit Data

Instead of Live Plots, this task shows the Progress Plot that provides live feedback on
the status of the fit. For instance, it displays fitting quality measures, such as the log-
likelihood, and estimated parameter values for each function iteration. The Progress
Plot opens in a new figure window. This task does not support plots in the Live Plots
area.

To turn off the Progress Plot, clear Show progress of the Fit Data task in the
Algorithm Settings section. For details, see “Progress Plot” on page 4-63.

Exploring Models

The SimBiology desktop provides explorer tools that let you iterate through different
parameter values, initial conditions, and dosing schedules without modifying the base
model. When you change a value, the desktop automatically reruns the task using
the new value, and the results are updated in the Live Plots. You can overlay results
from each run to see the changes in model behavior. For a summary of quantity values
used for each run, open the MultiRun Viewer from the Explorer tab. You can also
calculate statistics, such as the area under the curve of a drug concentration profile, to
gain additional insight.

You can turn the Explorer Tools on and off by selecting Explorer on the Editor tab.
If you turn it off, the desktop does not use the values defined in the tools during the task
run.

Adjust Quantities

You can explore how changes to quantity values affect the model behavior. To add a
quantity to explore, select Define Quantities to Adjust from the Options menu.
The desktop adds a slider for you to change the quantity value. Each time you move
the slider, the desktop reruns the task using the new slider value. You can overlay the
simulation results from each run and compare them.

1-72

 Running Tasks

Use the Options menu to configure the slider behavior and properties. For instance,
to stop the task from being run each time you move the slider, clear Run Task When
Quantity Changes Value. To change the range of the slider, select Define Slider
Properties.

Adjust Doses

An increase in a species amount or concentration due to an external stimulus, such as an
oral or intravenous administration of a drug, can be modeled using an element called a
dose. The Adjust Doses tool lets you create doses to explore different dosing regimens
and their effects on the model behavior.

To add a dose to explore, select Create Dose Schedule to Explore from the Options
menu. A dose plot is shown along with the dose properties that you can adjust. To add
doses at specific times and values, first click the green plus button on the right of the
plot, and then click inside the plot. You can use the sliders to adjust the dose properties
such as dose amount or dose time. To remove a dose, select the corresponding line in the
plot. Then click the red minus button on the right of the plot. Any unchecked dose is not
applied to the model during the task run.

You can also explore an existing dose by selecting Choose Existing Dose to Explore.
When exploring, the desktop does not change the existing dose properties. To avoid
double dosing, do not select the same dose in the Doses to Apply section of the task.

1-73

1 SimBiology Desktop

Calculate Statistics

You can evaluate a mathematical expression on the simulation results. The expression
can be any valid MATLAB expression that returns a numeric value. In your expression,
you can refer to any quantity by its name. If a quantity has an invalid MATLAB variable
name, enclose it in square brackets such as [DNA polymerase+]. You can also refer to
the simulation time variable as time. To add an expression, select Define Statistics to
Calculate from the Options menu. For instance, to calculate the AUC (area under the
curve) of the concentration-time curve of a drug, use the expression trapz(drug).

For a task that runs multiple simulations, such as the Run Scan task, the desktop
evaluates the expression at the end of each simulation. Open MultiRun Viewer to view
all the calculated results.

1-74

 Running Tasks

More About
• “Configuring Tasks” on page 1-63
• “Task Editor” on page 1-58
• “Built-in Tasks” on page 1-60
• “Analysis Workflow” on page 1-55

1-75

1 SimBiology Desktop

External Data and Task Results

SimBiology lets you build models of dynamic systems and perform model analyses using
available research data. For instance, you can import time-course data from experiments,
preprocess data, and use data in analysis tasks, such as parameter estimation. Task
results are generated by each task after it finishes running, and consist of simulation
data, summary of simulation options and task settings used during the task run, and
plots for data visualization and exploration.

You can import data from several file formats, such as Excel files (.xls, .xlsx), text files
(.csv, .txt), and SAS® XPORT files (.xpt). NONMEM®-formatted data are also supported,
and SimBiology interprets the columns according to the NONMEM definitions. For
details, see Importing Data-Supported Files and Data Types on page 5-7. You can
also import grouped data which have multiple groups of observations, such as measured
concentrations from multiple patients.

In addition, SimBiology lets you import variables from the MATLAB workspace. If
variables have the same dimension, you can concatenate them horizontally by multiple
selection (Ctrl + click or Command + click on a Mac).

You can edit column names while importing. After imported, the names are final, and
SimBiology refers to the columns by those names in subsequent workflows such as
plotting or fitting the data. To edit, double-click the name of a column in the Data
Preview section of the Import dialog box.

Both external data and task results are saved in a SimBiology project (*.sbproj). They
are accessible from the project panel in the workspace area of the desktop. Select Project
in the address bar and double-click the data set or task result to open it. The desktop
then displays the corresponding contents in the workspace area. The next figure shows
an example of the project workspace and an external data set when open.

1-76

 External Data and Task Results

You can visualize data using various built-in plots, such as time or scatter plots. First
open the data and select the plot type from the drop-down menu on the Define Plot tab.
Then define the corresponding input arguments for the plot. If you have grouped data,
you can create a trellis plot where each group is plotted on a separate axis.

To add more plots, select Blank Figure on the Define Plot tab. Plots are shown as
separate figure tabs in the workspace area. You can open and close the tabs. To reopen
any closed tab, select it from the Open drop-down menu. To remove a figure from the
project permanently, select Delete Figure.

The desktop provides built-in tools to help you explore data. For instance, you can take
a closer look at a particular area of the plot by zooming in. To query the values of data
points, select Data Cursor on the Define Plot tab and then click a data point.

You can also export data to MATLAB workspace as separate variables, a dataset, or
SimData object. In addition, you can export task results to a MAT or Excel file.

External Data

You can open any imported data set from the project panel. Each external data
set appears as a table on the Raw Data tab in the workspace area. The table

1-77

1 SimBiology Desktop

shows the values of each data column. You can classify the columns as a group
variable, independent variable, dependent variable, covariate, dose amount, and
dose rate variables from the drop-down menu of each column. You can also specify
the corresponding unit for each column. SimBiology uses these data classifications
accordingly in analysis tasks. For instance, the Group Simulation task uses the
independent and dependent variables to plot the data while applying the dose amounts
from the dose column to each group during simulation.

The desktop lets you preprocess data by excluding data points, such as outliers. Excluded
data points are not used during model analyses such as data fitting. The excluded rows
in the data are grayed out on the Raw Data tab. If you have any plots, these data points
are labeled as Excluded data. To define exclusion rules or edit existing ones, select
Edit Exclusions on the Explore Data tab and enter a valid MATLAB expression.
You can refer to the column names in your expressions. Alternatively, you can use the
drop-down menus from the exclusion editor to select a column and operator to define the
expression. For instance, the next figure shows an expression rule to exclude any data
points recorded after Time > 5.

You can transform data to make them easier to visualize or improve interpretability.
To add a new column of derived data from one or more existing columns using a
MATLAB expression, select Edit Derived Data on the Explore Data tab and enter the
expression. For instance, if you want to log-transform the measured drug concentrations,
enter log(Conc) where Conc is the name of the concentration column in your data.

The desktop also lets you compare time-course data to simulation results. To compare,
add the data to the time plot of simulated quantities in the Live Plots area of the task
editor. Right-click the time plot and select Define External Data to Plot.

1-78

 External Data and Task Results

If you have the time course of measured drug concentrations, you can calculate
pharmacokinetic (PK) parameters of the drug using non-compartmental analysis (NCA).
To see a table of PK parameters, select Open > NCA on the Define Plot tab. For details,
see NCA on page 4-84.

Task Results

Task results are saved as Last Run (task name - model name) after each run. If
you rerun the same task, the results are overwritten. To avoid overwriting them, save
the results with a different name. Right-click the Last Run result of the task from the
project panel in the workspace area and select Save Data.

When you open task results, the desktop shows the Summary tab and other figure
tabs in the workspace area. The Summary tab contains the details of the task, such as
simulation and compile options used during the task run. Generated plots, that is, plots
specified in the Plots to Generate section of the task, are shown in separate tabs. To
edit properties of each plot, such as changing x-axis or y-axis to a log scale, select Edit
Properties on the Define Plot tab.

In addition to generated plots, you can add new plots to visualize the results in different
ways and gain additional insight. For instance, you can explore the relationship between
two variables by adding an XY plot or check the quality of a fit with additional residual
plots.

To view or export simulation data, select View or Export on the Define Plot tab. You
can export the results to the MATLAB workspace and other files, such as MAT or Excel
files.

The next figure is an example of simulation task results from a two-compartment
model showing the concentration–time profile of a drug in the Central and Peripheral
compartments.

1-79

1 SimBiology Desktop

Tip You can navigate to the task results panel from the task editor by selecting Go To on
the Editor tab. You can also save the task results by selecting Save.

More About
• “Importing Data — Supported Files and Data Types” on page 5-7
• “Import Data from a NONMEM-Formatted File Using the SimBiology Desktop” on

page 5-16
• “Analysis Workflow” on page 1-55
• “Task Editor” on page 1-58

1-80

 External Data and Task Results

• “Built-in Tasks” on page 1-60
• “Non-compartmental Analysis” on page 4-84

1-81

2

Modeling

• “What is a Model?” on page 2-2
• “Model Modifiers” on page 2-5
• “Representing a Model and Model Modifiers” on page 2-6
• “Model Object” on page 2-8
• “Objects Representing Quantities” on page 2-9
• “Compartment Object” on page 2-10
• “Species Object” on page 2-11
• “Parameter Object” on page 2-15
• “Objects Representing Expressions” on page 2-16
• “Definitions and Evaluations of Reactions” on page 2-17
• “Definitions and Evaluations of Rules” on page 2-23
• “Event Object” on page 2-30
• “Objects Representing Model Modifiers” on page 2-39
• “Variant Object” on page 2-40
• “Doses” on page 2-42
• “Scoping” on page 2-45
• “Simulate Biological Variability of the Yeast G Protein Cycle Using the Wild-Type and

Mutant Strains” on page 2-46
• “Create and Simulate a Model with a Custom Function” on page 2-48
• “View Model Equations” on page 2-56
• “Component Usage” on page 2-57

2 Modeling

What is a Model?

In this section...

“Model Definition” on page 2-2
“Expressions” on page 2-2
“Quantities” on page 2-3
“Model Hierarchy” on page 2-4
“More About” on page 2-4

Model Definition

A SimBiology model is composed of a set of expressions (reactions, differential equations,
discrete events), which together describe the dynamics of a biological system. You write
expressions in terms of quantities (compartments, species, parameters), which are also
enumerated in the model.

Expressions

There are three distinct types of expressions in SimBiology:

• Reactions
• Rules
• Events

Reactions

A reaction describes a process such as a transformation, transport, or binding/unbinding
process between reactants and products.

Example reactions include:

Creatine + ATP <-> ADP + phosphocreatine

cytoplasm.speciesA -> nucleus.speciesA

Rules

A rule is a class of mathematical expressions that include differential equations, initial
assignments, repeated assignments, and algebraic constraints.

2-2

 What is a Model?

For example, you can use a rule to:

• Specify values for model components that are required for comparison with
experimental data. For example, specify the active fraction of total protein.

• Assign values to model components based on the values of other components in the
model. For example, define a parameter's value as being proportional to a species or
another parameter.

• Define mass balance equations.
• For species, use rate rules as an alternative to the differential rate expression

generated from reactions.

Events

An event describes an instantaneous change in the value of a quantity (compartment,
species, parameter). The discrete transition occurs when a user-specified condition
becomes true. The condition can be a specific time or a specific time-independent
condition.

For example, you can use an event to:

• Activate or deactivate a specific species (activator or inhibitor species)
• Change a parameter value based on external signals
• Change reaction rates in response to addition or removal of a species
• Replicate an experimental condition, such as the addition or removal of an activating

agent (such as a drug) to or from a sample

Quantities

SimBiology uses three types of quantities in models:

• Compartments
• Species
• Parameters

Compartments

A compartment defines a physically bounded region that contains species. A
compartment is characterized by a capacity expressed as volume, area, or length. A
compartment can also contain other compartments, which adds hierarchy to a model.

2-3

2 Modeling

For example, a compartment named cytoplasm might contain a compartment named
nucleus, thereby partitioning species based on their location.

Species

A species characterizes the state of the biological system by representing the amount (or
concentration) present in the system for that entity. Examples of species are DNA, ATP,
and creatine. Species' amounts (or concentrations) vary during a simulation as a result
of their participation in reactions, differential equations, and events. Therefore, species
represent the dynamical state of a biological system.

Parameters

A parameter is a quantity that is referred to by expressions. It typically remains constant
during a simulation. For example, parameters are used as rate constants in reactions.

You can configure a parameter to vary during a simulation. This is useful, for example,
to model the change in a reaction rate given the concentration of a catalyst or a change in
temperature.

Model Hierarchy

Note the following conditions imposed on quantities in the model hierarchy:

• Models must contain at least one compartment.
• A compartment can contain one or more compartments.
• Species are always contained within a compartment.

More About
“Representing a Model and Model Modifiers” on page 2-6

2-4

 Model Modifiers

Model Modifiers

In this section...

“Variants” on page 2-5
“Doses” on page 2-5

SimBiology provides the following modeling elements that you can use to modify or
perturb a model from its base configuration.

Variants

A variants is a collection of quantities (compartments, species, and/or parameters)
that you can use to alter a model's initial or base configuration, which is easier than
individually modifying each quantity separately. For example, assuming that a different
set of parameter values characterizes differences between wild type and mutant strains,
you can use a variant to group parameter values indicative of these strains. You apply
variants to a model to evaluate the model behavior under "variant" conditions. Note
that the model's original configuration is only temporarily altered, for example during a
simulation.

For example, you can use a variant to compare:

• Two different species, such as human versus mouse
• Wild type versus mutant strains
• Different experimental conditions

Doses

A dose is used to increment the amount (or concentration) of a species exogenously. For
example, you can use a dose to model the instantaneous supply of a drug regimen during
the simulation of a model. For details, see “Doses” on page 2-42.

2-5

2 Modeling

Representing a Model and Model Modifiers

In this section...

“Construct a Simple Model” on page 2-6
“SimBiology Objects” on page 2-6

Construct a Simple Model

This example shows how to construct a simple model consisting of one compartment, two
species, a parameter, and a reaction:

% Create a model named example

model = sbiomodel('example');

% Add a compartment named cell to model

compartment = addcompartment(model, 'cell');

% Add two species, A and B, to the cell compartment

species_1 = addspecies(compartment, 'A');

species_2 = addspecies(compartment, 'B');

% Add a parameter, K1, to model with a value of 3

parameter = addparameter(model, 'K1', 3);

% Add the reaction A -> B to the model

reaction = addreaction(model, 'A -> B', 'ReactionRate', 'K1');

SimBiology Objects

In SimBiology, models and their components are implemented as objects. For example,
in the previous code, model is a model object composed of a compartment object,
compartment, which in turn is composed of species, parameter and reaction objects.
These objects have properties and methods associated with them, which you use to access
and configure them. Use the get method to list the property values of an object. Use the
set method to change the property values of an object.

SimBiology objects are handle objects, which has implications for how they behave
during copy operations. In particular, handle objects do not behave as arrays of doubles
do in MATLAB. To learn how handle objects affect copy operations, see Copying Objects
in the MATLAB Programming Fundamentals documentation.

More About

• “Model Object” on page 2-8

2-6

 Representing a Model and Model Modifiers

• “Objects Representing Quantities” on page 2-9
• “Compartment Object” on page 2-10
• “Species Object” on page 2-11
• “Parameter Object” on page 2-15
• “Objects Representing Expressions” on page 2-16
• “Definitions and Evaluations of Reactions” on page 2-17
• “Definitions and Evaluations of Rules” on page 2-23
• “Event Object” on page 2-30
• “Objects Representing Model Modifiers” on page 2-39
• “Variant Object” on page 2-40
• “Doses” on page 2-42

2-7

2 Modeling

Model Object

A model object represents a model and is composed of quantities and expressions.
Quantities represent the state variables in the system while expressions depict the
relationships between quantities and therefore describe the dynamics of the model.

For information about... See...

Creating a model sbiomodel

Methods and properties of a model model object

Removing models from MATLAB
Workspace

clear

Deleting models sbioreset

2-8

 Objects Representing Quantities

Objects Representing Quantities

The following objects represent quantities in a model:

• Compartment
• Species
• Parameter

Scoping of Compartments, Species, and Parameters

Scoping refers to which object another object is contained in. Scoping affects
compartments, species, parameters, and rules.

• A compartment is scoped to (or contained in) a model or another compartment.
• Although a model can contain multiple compartments, each species is scoped to only

one compartment.
• A parameter is scoped to a model or a kinetic law.

Naming of Compartments and Species

Note the following when naming objects within a model:

• Compartment names must be unique within a model.
• Species in different compartments can have the same name.

More About

• “Compartment Object” on page 2-10
• “Species Object” on page 2-11
• “Parameter Object” on page 2-15

2-9

2 Modeling

Compartment Object

A compartment object represents a compartment, which is a physically isolated
region. It lets you associate pools of species to that physically isolated region. It has a
capacity associated with it.

All models must contain at least one compartment. A compartment is scoped to a
model or another compartment. A compartment contains one or more species. Each
compartment within a model must have a unique name.

You can add a compartment explicitly (using the addcompartment method) or add a
reaction (using the addreaction method) to create a compartment.

For information about... See...

Creating and adding a compartment to a
model

addcompartment, addreaction

Methods and properties of a compartment compartment object

2-10

 Species Object

Species Object

A species object represents a species, which is the amount of a chemical or entity
that participates in reactions. A species is always scoped to a compartment.

When adding species to a model with multiple compartments, you must specify qualified
names, using compartmentName.speciesName. For example, nucleus.DNA denotes the
species DNA in the compartment nucleus.

For information about... See...

Creating and adding a species to a model addspecies

Methods and properties of a species species object

How Species Amounts Change During Simulations

The amount of a species can remain constant or vary during the simulation of a model.
Use the following properties of a species object to specify how the amount of a
species changes during a simulation:

• ConstantAmount property — When set to true, the species amount does not change
during a simulation. The species can be part of a reaction or rule, but the reaction or
rule cannot change its amount. When set to false, the species amount is determined
by a reaction or a rule, but not both.

• BoundaryCondition property — When set to true, the species amount is either
constant or determined by a rule, but not determined by a chemical reaction. In other
words, the simulation does not create a differential rate term from the reactions for
this species, even if it is in a reaction, but it can have a differential rate term created
from a rule.

Keeping a Species Amount Unchanged

Set ConstantAmount to true and BoundaryCondition to false for a constant
species, whose amount is not changed by a reaction or rule. In this case, the species acts
like a parameter. It cannot be in a reaction, and it cannot be varied by a rule.

ConstantAmount BoundaryCondition Reaction Rule Changed By

True False No No Never

2-11

2 Modeling

Example — Species E is not part of the reaction, but it is part of the reaction rate
equation. E is constant and could be replaced with the constant Vm = k2*E.

 reaction: S -> P

reaction rate: kcat*E*S/(Km + S)

Changing a Species Amount with a Reaction or Rule

Set ConstantAmount to false and BoundaryCondition to false for a species whose
amount is changed by a reaction or rule, but not both.

ConstantAmount BoundaryCondition Reaction Rule Changed By

False False Yes No Reaction
False False No Yes Rule

Example 1 — Species A is part of a reaction, and it is in the reaction rate equation. The
species amount or concentration is determined by the reaction. This is the most common
category of a species. A differential rate equation for the species is created from the
reactions.

 reaction: A -> B

reaction rate: k*A

Example 2 — Species E is not part of the reaction, but it is in the reaction rate equation.
E varies with another reaction or rule.

 reaction: S -> P

reaction rate: kcat*E*S/(Km + S)

Example 3 — Species G is not part of a reaction, and it is not in a rate equation. G
varies with an algebraic rule or rate rule.

 rate rule: dG/dt = k

Changing a Species Amount with a Rule When Species is Part of a
Reaction

Set ConstantAmount to false and BoundaryCondition to true for a species whose
amount is changed by a rule, but the species is also part of a reaction, and a differential

2-12

 Species Object

rate term from the reaction is not created. The amount of the species changes with the
rule, and a differential rate term is created from the rule.

ConstantAmount BoundaryCondition Reaction Rule Changed By

False True Yes Yes Rule

Example 1 — Species A is not changed by the rate equation, but changes according to
a rate rule. However, A could be in the rate equation that changes other species in the
reaction.

 reaction: A -> B

reaction rate: k1 or k1*A

 rate rule: dA/dt = k2*A (solution is A = k2*t)

 (enter in SimBiology as A = k2*A)

Example 2 — Species A is not in the rate equation, but changes according to an
algebraic rule.

 reaction: A -> B + C

 reaction rate: k or k*A

algebraic rule: A = 2*C

 (enter in SimBiology as 2*C - A)

Keeping a Species Amount Unchanged When Species is Part of a
Reaction that Adds or Removes Mass

Set ConstantAmount to false and BoundaryCondition to true for a constant species
that is part of a reaction, but a differential rate term is not created from the reaction. The
differential rate term is created from a rule.

ConstantAmount BoundaryCondition Reaction Rule Changed By

True True Yes No Never

During simulation, a differential rate equation is not created for the species. dSpecies/
dt does not exist.

Example 1 — A is a infinite source and its amount does not change. B increases
with a zero order rate (k and k*A are both constants). A source refers to a species where
mass is added to the system.

 reaction: A -> B

2-13

2 Modeling

reaction rate: k or k*A

Example 2 — B decreases with a first-order rate, but A is an infinite sink and its
amount does not change. A sink refers to a species where mass is subtracted from the
system.

 reaction: B -> A

reaction rate: k*B

Example 3 — The null species is a reserved species name that can act as a source or a
sink.

 reaction: null -> B

reaction rate: k

 reaction: B -> null

reaction rate: k*B

Example 4 — ATP and ADP are in the reaction and have constant values, but they are
not in the reaction rate equation.

 reaction: S + ATP -> P + ADP

reaction rate: Vm*S/(Km + S)

2-14

 Parameter Object

Parameter Object

A parameter object represents a parameter, which is a value that typically remains
constant during a simulation. For example, you use parameters to define reaction rate
constants. In some circumstances it is useful to allow parameter values to vary. In these
cases you can specify a parameter as nonconstant.

For information about... See...

Creating and adding a parameter to a
model

addparameter

Methods and properties of a parameter parameter object

Scope of Parameter Objects

When you create a parameter, you scope it to either a model or a reaction.

Parameters Scoped to a Model

Parameters scoped to a model can be used (or referenced) by any expression (reaction,
rule, or event) in the model.

Parameters Scoped to a Reaction

Parameters scoped to a reaction can be used (or referenced) by only the reaction rate
expression.

2-15

2 Modeling

Objects Representing Expressions

The following objects represent expressions in a model:

• Reaction object
• KineticLaw object
• Rule object
• Event object

When Reactions, Rules, and Events Specify Parameters

Reactions, rules and events can specify one or more parameters. A parameter is scoped a
model or a kinetic law. Note the following when using a reaction, rule, or event to specify
a parameter:

• When a reaction specifies a parameter, the parameter can be scoped to the model
or the kinetic law that is part of that reaction. If more than one reaction specifies
the same parameter, the parameter must be scoped to the model. If two parameters
have the same name, one at the model level and the other at the kinetic law level,
the software uses the parameter at the kinetic law level for the reaction rate that
specifies the parameter.

• When a rule specifies a parameter, the parameter must be scoped to the model.
• When an event specifies a parameter, the parameter must be scoped to the model.

For more information, see “Scope of Parameter Objects” on page 2-15.

More About

• “Definitions and Evaluations of Reactions” on page 2-17
• “Definitions and Evaluations of Rules” on page 2-23
• “Event Object” on page 2-30
• “Create and Simulate a Model with a Custom Function” on page 2-48

2-16

 Definitions and Evaluations of Reactions

Definitions and Evaluations of Reactions

A reaction is a mathematical expression that describe a transformation, transport, or
binding process that changes one or more species. Typically, an amount of a species is
changed through a reaction.

In SimBiology, a reaction is represented by a reaction object, which has the
following properties.

• Reaction property — Mathematical expression that describes the reaction
• ReactionRate property — Mathematical expression that defines the rate at which

the reactants combine to form products. You can provide this information explicitly or
use the KineticLaw property to populate this information.

• KineticLaw property — Object that specifies a rate law that defines the type of
reaction rate. Examples include Henri-Michaelis-Menten and Mass Action. The object
also specifies species objects, or parameter objects. This property is optional.
It serves as a template for a reaction rate and provides a convenient way of applying
a specific rate law to multiple reactions. If you use this property, it automatically
populates the ReactionRate property.

A reaction is scoped to a model.

For information about... See...

Creating and adding a reaction to a model addreaction

Methods and properties of a reaction reaction object

Creating and adding a kinetic law to a
reaction

addkineticlaw

Methods and properties of a kinetic law KineticLaw object

Writing Reaction Expressions

Use standard chemistry reaction notation to create the mathematical expression for a
reaction (Reaction property of a reaction object).

Following are rules for writing reaction expressions:

• Use spaces before and after species names and stoichiometric values.
• Stoichiometry values must be positive.

2-17

2 Modeling

• If a stoichiometry value is not specified, it is assumed to be 1.
• In a model with a single compartment, specify species using speciesName. In

a model with multiple compartments, specify species using qualified names:
compartmentName.speciesName. For example, nucleus.DNA denotes the species
DNA in the compartment nucleus.

• Enclose names with non-alphanumeric characters (including spaces) in brackets.
• Reactions can be reversible (<->) or irreversible (->).

Examples of reaction expressions include:

Creatine + ATP <-> ADP + phosphocreatine

glucose + 2 ADP + 2 Pi -> 2 lactic acid + 2 ATP + 2 H2O

cytoplasm.A -> nucleus.A

[compartment 1].[species A] -> [compartment 2].[species A]

Note: Same species can be used multiple times in the list of reactions or products. The
expression '2 A' is equivalent to 'A + A'.

Writing Reaction Rate Expressions Explicitly

Use any valid MATLAB code to create the mathematical expression for a reaction
rate (ReactionRate property of a reaction object). The reaction rate can specify
compartments, species, or parameters.

Following are rules for writing reaction rate expressions:

• The expression must be a single MATLAB statement that returns a scalar.
• In a model with a single compartment, specify species using speciesName. In

a model with multiple compartments, specify species using qualified names:
compartmentName.speciesName. For example, nucleus.DNA denotes the species
DNA in the compartment nucleus.

• Enclose names with non-alphanumeric characters (including spaces) in brackets.
• Do not end the reaction rate expression with any of the following:

• Semicolon
• Comma
• Comment text preceded by %

2-18

 Definitions and Evaluations of Reactions

• Line continuations indicated by ...

For example, if you have the following reaction expression:

Creatine + ATP <-> ADP + phosphocreatine

and the reaction follows Mass Action kinetics, then the reaction rate expression would be:

K*Creatine*ATP - Krev*ADP*phosphocreatine

Tip If your reaction rate expression is not continuous and differentiable, see “Using
Events to Address Discontinuities in Rule and Reaction Rate Expressions” on page
2-38 before simulating your model.

Creating Reaction Rate Expressions Using Kinetic Law Objects

A KineticLaw object is scoped to a reaction and specifies:

• A rate law that defines the type of reaction rate. Examples include Henri-Michaelis-
Menten and Mass Action.

• species and parameters

A KineticLaw object serves as a template for a reaction rate and provides a
convenient way of applying a specific rate law to multiple reactions. You can use this
object to create a reaction rate, which populates the ReactionRate property of the
reaction object.

For example, if you create a KineticLaw object that specifies Henri-Michaelis-Menten
for the KineticLawName, species S, and parameters Vm and Km, the reaction rate law is:

V S K Smm * / ()+

Then if you create a reaction object that specifies the previous KineticLaw object
and species the following reaction expression:

A -> B

with Vm = Va and Km = Ka and S = A, then the reaction rate equation is:

Va*A/(Ka + A)

2-19

2 Modeling

Examples of Creating Reaction Rates

Example of Creating a Zero-Order Reaction

With a zero-order reaction, the reaction rate does not depend on the concentration of
reactants. Examples of zero-order reactions are synthesis from a null species, and
modeling a source species that is added to the system at a specified rate.

 reaction: null -> P

reaction rate: k mole/second

 species: P = 0 mole

 parameters: k = 1 mole/second

Note: When specifying a null species, the reaction rate must be defined in units of
amount per unit time not concentration per unit time.

Entering the reaction above into the software and simulating produces the following
result:

Zero-Order Mass Action Kinetics

2-20

 Definitions and Evaluations of Reactions

Note: If the amount of a reactant with zero-order kinetics reaches zero before the end of
a simulation, then the amount of reactant can go below zero regardless of the solver or
tolerances you set.

Examples of Creating Other Reactions

For examples of creating other reaction rates, see “Create Reaction Rates” on page
A-2.

How Reaction Rates Are Evaluated

Reaction Rate Dimensions

When calculating species fluxes, SimBiology must determine whether you specified
reaction rates in dimensions of amount/time or concentration/time. When all
compartments in a model have a capacity of one unit, amount and concentration are
numerically equivalent.

For all other models, the numerical results of the simulation depend on which
interpretation SimBiology selects. SimBiology determines whether a reaction rate
is in dimensions of amount/time or concentration/time via dimensional analysis of
ReactionRate expressions. This minimum level of dimensional analysis always occurs,
even when DimensionalAnalysis and UnitConversion are off.

The DefaultSpeciesDimension property defines the dimensions of species appearing
in a reaction rate. SimBiology infers the dimensions of parameters appearing in a
reaction rate from their ValueUnits property. If any parameters appearing in a reaction
rate expression do not have units, SimBiology interprets the reaction rate in dimensions
of amount/time. Therefore, the only way to specify that a reaction rate has dimensions of
concentration/time is to assign appropriate units to all parameters.

Reactions Spanning Multiple Compartments

Specify reactions that span compartments using the syntax
compartment1Name.species1Name –> compartment2Name.species2Name. The
reaction rate dimensions must resolve to amount/time when:

• Species span multiple compartments.
• The reaction is reversible mass action and the products are in multiple compartments.

2-21

2 Modeling

Examples

Consider a reaction a + b —> c. Using mass action kinetics, the reaction rate is
k*a*b, where k is the rate constant of the reaction. If you specify that initial amounts
of a and b are 0.01 molarity and 0.005 molarity respectively, then the reaction
rate is in concentration/time (and units of molarity/second) if the units of k are
1/(molarity*second). If you specify k with another equivalent unit definition, for
example, 1/((moles/liter)*second), SimBiology checks whether the physical
quantities match. If the physical quantities do not match, you see an error and the model
is not simulated.

If, in the previous example, you specify that initial amounts of a and b are
0.01 and 0.005 respectively, without specifying units, SimBiology checks
whether DefaultSpeciesDimension is substance or concentration. If
DefaultSpeciesDimension is concentration, and you set units on the rate constant
such that the reaction rate dimensions resolve to concentration/time, SimBiology
scales the species amounts for compartment capacity, and returns the species values in
concentration.

If you specify initial amounts of a and b as 0.01 molarity and 0.005 mole
respectively, include the volume scaling for b in the reaction rate expression. Include
volume scaling in the rate constant, and set the units of the rate constant accordingly (1/
(mole*second) for concentration/time, or 1/(molarity*second) for amount/time).

Viewing Equations for Reactions

You can view the system of equations that SimBiology creates when you build a model
using reaction expressions. For details, see “View Model Equations” on page 2-56.

More About
“Create and Simulate a Model with a Custom Function” on page 2-48

2-22

 Definitions and Evaluations of Rules

Definitions and Evaluations of Rules

In this section...

“Overview” on page 2-23
“Initial Assignment” on page 2-23
“Repeated Assignment” on page 2-24
“Algebraic Rules” on page 2-24
“Repeated Assignment vs. Algebraic Rules” on page 2-25
“Rate Rules” on page 2-25
“Writing Rule Expressions” on page 2-25
“Considerations When Imposing Constraints” on page 2-26
“Conservation of Amounts When Simulation Time = 0 and Time > 0” on page 2-26
“Examples” on page 2-28

Overview

Rules are mathematical expressions that allow you to define or modify model quantities,
namely compartment capacity, species amount, or parameter value.

Rules can take the form of initial assignments, assignments during the course of a
simulation (repeated assignments), algebraic relationships, or differential equations (rate
rules). Details of each type of rule are described next.

Initial Assignment

An initial assignment rule lets you specify the initial value of a model quantity as a
numeric value or as a function of other model quantities. It is evaluated once at the
beginning of a simulation.

An initial assignment rule is expressed as Variable = Expression, and the rule is
specified as the Expression. For example, you could write an initial assignment rule to
set the initial amount of species2 to be proportional to species1 as species2 = k *
species1 where k is a constant parameter.

Initial assignments are evaluated in the order in which they occur in the model. Note
that their effects can change when you reorder them.

2-23

2 Modeling

Repeated Assignment

A repeated assignment rule lets you specify the value of a quantity as a numeric value
or as a function of other quantities repeatedly during the simulation. It is evaluated at
every time step, which are determined by the solver during the simulation process.

A repeated assignment rule is expressed as Variable = Expression, and the rule is
specified as the Expression. For example, to repeatedly assign the value of 50 to species
x throughout the simulation, define the repeated assignment rule as x = 50.

Repeated assignments are reordered automatically and evaluated as a set of
simultaneous constraints. Thus it is not possible to create circular sets of assignments
such as a = b + 1 and b = a + 1.

Algebraic Rules

An algebraic rule lets you specify mathematical constraints on one or more model
quantities that must hold during a simulation. It is evaluated continuously during a
simulation.

An algebraic rule takes the form 0 = Expression, and the rule is specified as
the Expression. For example, if you have a mass conservation equation such as
species_total = species1 + species2, write the corresponding algebraic rule as
species1 + species2 - species_total.

However, repeated assignment rules are mathematically equivalent to algebraic
rules, but result in exact solutions instead of approximated solutions. Therefore, it
is recommended that you use repeated assignment rules instead of algebraic rules
whenever possible. Use algebraic rules only when:

• You cannot analytically solve the equations to get a closed-form solution. For example,
there is no closed-form solution for x^4 + ax^3 + bx^2 + cx + k = 0 whereas
the closed-form solution for kx – c = 0 is x = c/k.

• You have multiple equations with multiple unknowns, and they could be inconvenient
to solve.

Tip If you use an algebraic or rate rule to vary the value of a parameter or compartment
during the simulation, make sure the ConstantValue property of the parameter or
ConstantCapacity of the compartment is set to false.

2-24

 Definitions and Evaluations of Rules

Repeated Assignment vs. Algebraic Rules

Repeated assignment rules are mathematically equivalent to algebraic rules, but result
in exact solutions. However, algebraic rules are solved numerically, and the accuracy
depends on the error tolerances specified in the simulation settings. In addition, there
are several advantages to repeated assignment rules such as better computational
performance, more accurate results since no rules have to be solved numerically (hence
no approximations), and sensitivity analysis support.

Tip

• If you can analytically solve for a variable, use a repeated assignment rule instead of
an algebraic rule.

• In repeated assignment rules, the constrained variable is explicitly defined as the left-
hand side, whereas in algebraic rules it is inferred from the degrees of freedom in the
system of equations. See also “Considerations When Imposing Constraints” on page
2-26.

Rate Rules

A rate rule represents a differential equation and lets you specify the time derivative of a
model quantity. It is evaluated continuously during a simulation.

A rate rule is represented as
dVariable

dt
Expression= , which is expressed in SimBiology as

Variable = Expression. For example, if you have a differential equation for species x,
dx

dt
k y z= +() , write the rate rule as: x = k * (y + z).

For examples of rate rules, see “Create Rate Rules” on page B-2.

Writing Rule Expressions

Use MATLAB syntax to write a mathematical expression for a rule. Note that no
semicolon or comma is needed at the end of a rule expression. If your algebraic, repeated
assignment, or rate rule expression is not continuous or differentiable, see “Using Events

2-25

2 Modeling

to Address Discontinuities in Rule and Reaction Rate Expressions” on page 2-38
before simulating your model.

Considerations When Imposing Constraints

Suppose you have a species y whose amount is determined by the equation y = m * x
- c. In SimBiology, the algebraic rule to describe this constraint is written as m * x -
c - y. If you want to use this rule to determine the value of y, then m, x, and c must
be variables or constants whose values are known or determined by other equations.
Therefore, you must ensure that the system of equations is not overconstrained or
underconstrained. For instance, if you have more equations than unknowns, then the
system is overconstrained. Conversely, if you have more unknowns than the equations,
then the system is underconstrained.

Tip The behavior of an underconstrained system could be fixed by adding additional rules
or by setting the ConstantValue or ConstantCapacity or ConstantAmount property
of some of the components in the model.

Conservation of Amounts When Simulation Time = 0 and Time > 0

During a simulation (i.e., at simulation time > 0), if there are any changes to the volume
of a compartment where the species reside, SimBiology conserves species amounts rather
than concentrations.

At the beginning of a simulation (i.e., at time = 0), SimBiology evaluates the initial
assignment rules one after another based on the order they appear in the model rather
than as a set of mathematical constraints to be analyzed together. More specifically, at
time = 0, SimBiology:

1 Initializes variables for species, compartments, and parameters using the
InitialAmount, Capacity, and Value properties.

2 Updates the variables by evaluating initial assignment rules in the order they
appear, thus not conserving species amounts if the compartment’s volume changes.

3 Updates the variables by evaluating repeated assignment rules as a set of
constraints that conserve species amounts when the compartment’s volume changes.

At time > 0, SimBiology:

2-26

 Definitions and Evaluations of Rules

• Updates the variables by evaluating repeated assignment rules as a set of constraints
that conserve species amounts when the compartment’s volume changes.

SimBiology defines a compartment’s volume before evaluating repeated assignments, and
if you have a repeated assignment rule or an event that changes the volume and depends
on time (either explicitly or implicitly), then you will see the effect of conservation of
species amount(s) at time > 0.

Illustration of Conservation of Amounts

Consider the following example that illustrates such conservation of amounts. Suppose
there is a one-compartment model with a drug that degrades according to the mass
action kinetics with the forward reaction rate k. In order to distinguish the amount and
concentration units, the drug is represented in two different species: one in an amount
unit (milligram) and another one in a concentration unit (milligram/liter).

Compartment, Species, and Parameter Initial Values

cell (compartment) 1.0 liter
Amount_A (drug A in amount units) 0.0 milligram
Concentration_A (drug A in
concentration units)

100.0 milligram/liter

k (forward rate parameter) 0.1 hour-1

Here is an initial assignment, repeated assignment, and event as they appear in the
model.

Rules and Event Formula

Initial assignment cell = 2.0

Repeated assignment Amount_A = Concentration_A * cell

Event Trigger: time >= 5; EventFcns: cell
= 4.0

The initial compartment volume is doubled at time = 0 by the initial assignment, and
doubled again at time >= 5 by the event.

The model is simulated, and the final results are shown in the following States versus
Time figure.

2-27

2 Modeling

At time = 0, the volume of the cell is doubled to 2.0 liters via the initial assignment, and
consequently the amount of drug A becomes 200 milligram as defined by the repeated
assignment. But the concentration does not change and is still 100 milligram/liter. This
illustrates that the amount is not conserved at time = 0. However, at time >= 5, the
volume of the cell becomes 5.0 liter and causes a drop in the concentration (milligram/
liter) to conserve the amount (milligram) of drug A. Thus this example illustrates that at
time > 0 the amount (instead of the concentration) of drug A is conserved at all times, but
not at time = 0.

Examples

“Create Rate Rules” on page B-2.

2-28

 Definitions and Evaluations of Rules

“Create and Simulate a Model with a Custom Function” on page 2-48.

2-29

2 Modeling

Event Object
In this section...

“Overview” on page 2-30
“Event Triggers” on page 2-30
“Event Functions” on page 2-31
“Specifying Event Triggers” on page 2-31
“Specifying Event Functions” on page 2-33
“Simulation Solvers for Models Containing Events” on page 2-34
“How Events Are Evaluated” on page 2-34
“Evaluation of Simultaneous Events” on page 2-36
“Evaluation of Multiple Event Functions” on page 2-37
“When One Event Triggers Another Event” on page 2-37
“Cyclical Events” on page 2-38
“Using Events to Address Discontinuities in Rule and Reaction Rate Expressions” on
page 2-38

Overview

In SimBiology, an event is a discrete transition in value of a quantity or expression in a
model. This discrete transition occurs when a customized condition becomes true. The
condition can be a specific time and/or a time-independent condition. Such conditions are
defined in an Event object.

Event Triggers

An event object has a Trigger property that specifies a condition that must be true to
trigger the event to execute.

Typical event triggers are:

• A specific simulation time — Specify that the event must change the amounts or
values of species or parameters. For example, at time = 5 s, increase the amount of an
inhibitor species above the threshold to inhibit a given reaction.

• In response to state or changes in the system — Change amounts/values of certain
species/parameters in response to events that are not tied to any specific time. For

2-30

 Event Object

example, when species A reaches an amount of 30 molecules, double the value of
reaction rate constant k. Or when temperature reaches 42 °C, inhibit a particular
reaction by setting its reaction rate to zero.

Note: Currently, events cannot be triggered at time = 0. However, you can get the event
to happen just after time = 0 by using 'time > timeSmall' as the event trigger where
timeSmall can be a tiny fraction of a second such as 1.0 picosecond.

Event Functions

An event has an EventFcns property that specifies what occurs when the event is
triggered. Event functions can range from simple to complex. For example, an event
function might:

• Change the values of compartments, species, or parameters.
• Double the value of a reaction rate constant.

Specifying Event Triggers

The Trigger property of an event specifies a condition that must become true for an
event to execute. Typically, the condition uses a combination of relational and logical
operators to build a trigger expression.

A trigger can contain the keyword time and relational operators to trigger an event
that occurs at a specific time during the simulation. For example, time >= x. For more
information see the Trigger property.

Use MATLAB syntax to write expressions for event triggers. Note that the expression
must be a single MATLAB statement that returns a logical. No semicolon or comma
is needed at the end of an expression. MATLAB uses specific operator precedence to
evaluate trigger expressions. Precedence levels determine the order in which MATLAB
evaluates an expression. Within each precedence level, operators have equal precedence
and are evaluated from left to right. To find more information on how relational and
logical operators are evaluated see “Relational Operations” and “Logical Operations” in
the MATLAB Programming Fundamentals documentation.

Some examples of triggers are:

2-31

2 Modeling

Trigger Explanation

'(time >= 5) && (speciesA <

1000)'

Execute the event when the following condition
becomes true:

Time is greater than or equal to 5, and
speciesA is less than 1000.

Tip Using a && (instead of &) evaluates the
first part of the expression for whether the
statement is true or false, and skips evaluating
the second statement if this statement is false.

'(time >= 5) || (speciesA <

1000)'

Execute the event when the following condition
becomes true:

Time is greater than or equal to 5, or if
speciesA is less than 1000.

'(s1 >= 10.0) || (time >= 250)

&& (s2 < 5.0E17)'

Execute the event when the following condition
becomes true:

Species, s1 is greater than or equal to 10.0
or, time is greater than or equal to 250 and
species s2 is less than 5.0E17.

Because of operator precedence, the expression
is treated as if it were '(s1 >=10.0) ||
((time>= 250) && (s2<5.0E17))'.

Thus, it is always a good idea to use
parenthesis to explicitly specify the intended
precedence of the statements.

'((s1 >= 10.0) || (time >=

250)) && (s2 < 5.0E17)'

Execute the event when the following condition
becomes true:

Species s1 is greater than or equal to 10 or
time is greater than or equal to 250, and
species s2 is less than 5.0E17.

2-32

 Event Object

Trigger Explanation

'((s1 >= 5000.0) && (time >=

250)) || (s2 < 5.0E17)'

Execute the event when the following condition
becomes true:

Species s1 is greater than or equal to 5000
and time is greater than or equal to 250, or
species s2 is less than 5.0E17.

Tip If UnitConversion is on and your model has any event, follow the recommendation
below.

Non-dimensionalize any parameters used in the event trigger if they are not already
dimensionless. For example, suppose you have a trigger x > 1, where x is the species
concentration in mole/liter. Non-dimensionalize x by scaling (dividing) it with a constant
such as x/x0 > 1, where x0 is a parameter defined as 1.0 mole/liter. Note that x does
not have to have the same unit as the constant x0, but must be dimensionally consistent
with it. For example, the unit of x can be picomole/liter instead of mole/liter.

Specifying Event Functions

The EventFcns property of an event specifies what occurs when the event is triggered.
You can use an event function to change the value of a compartment, species, or
parameter, or you can specify complex tasks by calling a custom function or script.

Use MATLAB syntax to define expressions for event functions. The expression must
be a single MATLAB assignment statement that includes =, or a cell array of such
statements. No semicolon or comma is needed at the end of the expression.

Following are rules for writing expressions for event functions:

EventFcn Explanation

'speciesA = speciesB' When the event is executed, set the amount of
speciesA equal to that of speciesB.

'k = k/2' When the event is executed, halve the value of the
rate constant k.

{'speciesA = speciesB','k =

k/2'}

When the event is executed, set the amount of
speciesA equal to that of speciesB, and halve
the value of the rate constant k.

2-33

2 Modeling

EventFcn Explanation

'kC = my_func(A,B,kC)' When the event is executed, call the custom
function my_func(). This function takes three
arguments: The first two arguments are the
current amounts of two species (A and B) during
simulation and the third argument is the current
value of a parameter, kC. The function returns the
modified value of kC as its output.

Simulation Solvers for Models Containing Events

To simulate models containing events, use a deterministic (ODE or SUNDIALS) solver
or the stochastic ssa solver. Other stochastic solvers do not support events. For more
information, see “Choosing a Simulation Solver” on page 4-8.

How Events Are Evaluated

Consider the example of a simple event where you specify that at 4s, you want to assign
a value of 10 to species A.

2-34

 Event Object

At time = 4 s the trigger becomes true and the event executes. In the previous figure
assuming that 0 is false and 1 is true, when the trigger becomes true, the amount of
species A is set to 10. In theory, with a perfect solver, the event would be executed exactly
at time = 4.00 s. In practice there is a very minute delay (for example you might
notice that the event is executed at time = 4.00001 s). Thus, you must specify that
the trigger can become true at or after 4s, which is time >= 4 s.

Trigger EventFcn

time >= 4 A = 10

The point at which the trigger becomes true is called a rising edge. SimBiology events
execute the EventFcn only at rising edges.

The trigger is evaluated at every time step to check whether the condition specified in
the trigger transitions from false to true. The solver detects and tracks falling edges,
which is when the trigger becomes false, so if another rising edge is encountered, the

2-35

2 Modeling

event is reexecuted. If a trigger is already true before a simulation starts, then the event
does not execute at the start of the simulation. The event is not executed until the solver
encounters a rising edge. Very rarely, the solver might miss a rising edge. An example
of this is when a rising edge follows very quickly after a falling edge, and the step size
results in the solver skipping the transition point.

If the trigger becomes true exactly at the stop time of the simulation, the event might or
might not execute. If you want the event to execute, increase the stop time.

Note: Since the rising edge is instantaneous and changes the system state, there are two
values for the state at the same time. The simulation data thus contains the state before
and after the event, but both points are at the same time value. This leads to multiple
values of the system state at a single instant in time.

Evaluation of Simultaneous Events

When two or more trigger conditions simultaneously become true, the solver executes the
events sequentially in the order in which they are listed in the model. You can reorder
events using the reorder method. For example, consider this case.

Event Number Trigger EventFcn

1 SpeciesA >= 4 SpeciesB = 10

2 SpeciesC >= 15 SpeciesB = 25

The solver tries to find the rising edge for these events within a certain level of tolerance.
If this results in both events occurring simultaneously, then the value of SpeciesB after
the time step in which these two events occur, will be 25. If you reorder the events to
reverse the event order, then the value of SpeciesB after the time step in which these
two events occur, will be 10.

Consider an example in which you include event functions that change model
components in a dependent fashion. For example, the event function in Event 2,
stipulates that SpeciesB takes the value of SpeciesC.

Event Number Trigger EventFcn

1 SpeciesA >= 4 SpeciesC = 10

2 time >= 15 SpeciesB = SpeciesC

2-36

 Event Object

Event 1 and Event 2 might or might not occur simultaneously.

• If Event 1 and Event 2 do not occur simultaneously, when Event 2 is triggered,
SpeciesB is assigned the value that SpeciesC has at the time of the event trigger.

• If Event 1 and Event 2 occur simultaneously, the solver executes Event 1 first, then
executes Event 2. In this example, if SpeciesC = 15 when the events are triggered,
after the events are executed, SpeciesC = 10 and SpeciesB = 10.

Evaluation of Multiple Event Functions

Consider an event function in which you specify that the value of a model component
(SpeciesB) depends on the value of model component (SpeciesA), but SpeciesA also is
changed by the event function.

Trigger EventFcn

time >= 4 {'SpeciesA = 10, SpeciesB = SpeciesA'}

The solver stores the value of SpeciesA at the rising edge and before any event
functions are executed and uses this stored value to assign SpeciesB its value. So in
this example if SpeciesA = 15 at the time the event is triggered, after the event is
executed, SpeciesA = 10 and SpeciesB = 15.

When One Event Triggers Another Event

In the next example, Event 1 includes an expression in the event function that causes
Event 2 to be triggered (assuming that SpeciesA has amount less than 5 when Event 1
is executed).

Event Number Trigger EventFcn

1 time >= 5 {'SpeciesA = 10, SpeciesB = 5'}

2 SpeciesA >= 5 SpeciesC = SpeciesB

When Event 1 is triggered, the solver evaluates and executes Event 1 with the result that
SpeciesA = 10 and SpeciesB = 5. Now, the trigger for Event 2 becomes true and the
solver executes the event function for Event 2. Thus, SpeciesC = 5 at the end of this
event execution.

You can thus have event cascades of arbitrary length, for example, Event 1 triggers
Event 2, which in turn triggers Event 3, and so on.

2-37

2 Modeling

Cyclical Events

In some situations, a series of events can trigger a cascade that becomes cyclical. Once
you trigger a cyclical set of events, the only way to stop the simulation is by pressing Ctrl
+C. You lose any data acquired in the current simulation. Here is an example of cyclical
events. This example assumes that Species B <= 4 at the start of the cycle.

Event Number Trigger EventFcn

1 SpeciesA > 10 {SpeciesB = 5, SpeciesC = 1'}

2 SpeciesB > 4 {SpeciesC = 10, SpeciesA = 1'}

3 SpeciesC > 9 {SpeciesA = 15, SpeciesB = 1'}

Using Events to Address Discontinuities in Rule and Reaction Rate
Expressions

The solvers provided with SimBiology gives inaccurate results when the following
expressions are not continuous and differentiable:

• Repeated assignment rule
• Algebraic rule
• Rate rule
• Reaction rate

Either ensure that the previous expressions are continuous and differentiable or use
events to reset the solver at the discontinuity, as described in “Deterministic Simulation
of a Model Containing a Discontinuity”.

2-38

 Objects Representing Model Modifiers

Objects Representing Model Modifiers

Variant and dose objects can modify or perturb a model from its base configuration.

For an example of creating and using an event in a model, see .

More About

• “Variant Object” on page 2-40
• “Doses” on page 2-42

2-39

2 Modeling

Variant Object

A variant object represents a variant, which is an alternate value for a compartment,
species, or parameter in a model. You can apply this alternate value during a simulation,
which lets you evaluate model behavior with a different value, without having to search
and replace the value, or create an additional model with the new value.

You can use a variant to store an alternate value for any of the following:

• Compartment Capacity property
• Species InitialAmount property
• Parameter Value property

The alternate value applies temporarily, only during a simulation, and does not alter
the model's values permanently. If you determine that the values in a variant accurately
define your model, you can permanently replace the values in your model with the values
stored in the variant object by using the commit method.

Creating and Simulating with Variants

1 Create a variant object and add it to a model using the addvariant method.
2 (Optional) Set the Active property of the variant object to true if you always

want the variant to be applied before simulating the model.
3 Enter the model and variant object as input arguments to sbiosimulate. This

applies the variant only for the current simulation and supersedes any active variant
objects on the model.

or

If you followed step 2, simply call sbiosimulate on the model object to apply the
variant.

For an example of creating and using a variant in a model, see “Simulate Biological
Variability of the Yeast G Protein Cycle Using the Wild-Type and Mutant Strains” on
page 2-46.

For information about... See...

Creating and adding a variant to a model addvariant

2-40

 Variant Object

For information about... See...

Creating a stand-alone variant sbiovariant

Methods and properties of a variant Variant object

Appending contents to variants addcontent

Replacing model values permanently with
values from a variant

commit

Simulating with Multiple Variants in a Model

When you use multiple variants during a simulation, and there are duplicate
specifications for a property's value, the last occurrence for the property value in the
array of variants is used during simulation. You can find out which variant is applied
last by looking at the indices of the variant objects stored on the model.

If you specify variants as arguments to sbiosimulate, this applies the variants for the
current simulation in the order that they are specified, and supersedes any active variant
objects on the model.

Similarly, in the variant contents (Content property), if there are duplicate
specifications for a property's value, the last occurrence for the property in the contents is
used during simulation.

2-41

2 Modeling

Doses

Doses let you increase the amount of a species in a SimBiology model during simulation,
either at specific time points or predefined time intervals. For example, you can use a
dose object to model an instantaneous supply of a drug regimen during the simulation of
a model. The increase in the amount of a species occurs only during simulation and does
not alter the species' value permanently (that is, the value in the model is not changed).

Representing Doses

In SimBiology, doses are represented by two types of dose objects.

• ScheduleDose object — Applies a dose to a single species at a predefined list of
time points

• RepeatDose object — Repeatedly applies a dose to a single species at regularly
spaced time intervals

SimBiology dose objects support the following common dosing types.

Dosing
Strategy

Description

Bolus Instantaneous increase in the amount of drug in the compartment
Infusion Increase of the drug at a fixed rate over a period of time, which is

calculated from the dose amount
Zero-order Increase of the drug at a fixed rate calculated from the dose amount and

dose duration
First-order Increase of the drug via the first-order absorption kinetics

Creating Dose Objects

There are two common ways to create dose objects. One way is to create a dose object
using the sbiodose or adddose function. Another is to create dose objects automatically
from data containing dosing information. This first approach is useful when you want
to explore different dosing strategies through simulation. The second approach is useful
if you already have a data set with dosing information and plan to use such dosing
information in your simulation or parameter estimation.

2-42

 Doses

Create a Dose Object Using sbiodose or adddose

sbiodose creates a standalone dose object that is not attached to any model. You can
apply a standalone dose to different models during simulation by specifying it as a dosing
argument for sbiosimulate or attach it to any model using adddose. You can also use
it during parameter estimation using sbiofit or sbiofitmixed.

adddose creates a dose object and adds it to a model. Use this function if you want to
attach a dose object to a model. You must set its Active property to true to apply the
dose to the model during simulation.

The following examples show how to add a dose object to a one-compartment PK model
using sbiodose and set up the dose properties manually. Alternatively, you can use the
built-in PK models with different dosing types. For details, see “Create Pharmacokinetic
Models” on page 5-25.

Dosing Strategy Example Dose Object Properties Configuration

Bolus “Add a Series of Bolus Doses to a
One-Compartment Model”

To create a bolus dose, set
the Amount and TargetName
properties of a dose object. You
might also need to configure other
properties such as RepeatCount,
Interval or scheduled dose times
(Time) if you are applying a series
of doses. For details on these
properties, see ScheduleDose
object and RepeatDose object
.

Infusion “Add an Infusion Dose to a One-
Compartment Model”

Unlike a bolus dose, you also need
to specify the infusion rate (Rate
property) of the dose object.

Zero-order “Increase Drug Concentration in a
One-Compartment Model via Zero-
order Dosing”

Unlike a bolus dose, you need
to additionally create a zero-
order duration parameter and
specify the duration parameter
name (DurationParameterName
property) of the dose object.

2-43

2 Modeling

Dosing Strategy Example Dose Object Properties Configuration

First-order “Increase Drug Concentration in a
One-Compartment Model via First-
order Dosing”

Unlike bolus, infusion, or zero-
order, you need to create an
additional reaction for the drug
absorption.

Create Dose Objects from Dosing Data

If you already have dosing data for one or more subjects or patients that you would like
to use in your parameter estimation, first create a groupedData object from your data
set. Then use createDoses function to automatically generate an array of dose objects
that you can specify as an input argument for sbiofit or sbiofitmixed for fitting. For
a complete workflow see “Modeling the Population Pharmacokinetics of Phenobarbital in
Neonates”.

Simulation Solvers for Models Containing Doses

To simulate models containing doses, use a deterministic (ODE or SUNDIALS) solver.
Stochastic solvers do not support doses. For details, see “Choosing a Simulation Solver”
on page 4-8.

See Also
adddose | RepeatDose object | sbiodose | ScheduleDose object

2-44

 Scoping

Scoping

In SimBiology, scoping refers to which object another object is contained in. For example,
a compartment is scoped to (or contained in) a model or another compartment, a species
is scoped to a compartment, and a parameter is scoped to a model or a kinetic law.

Suppose, you have added a parameter k1 to a model, then the parameter is scoped to the
model. But if you add it to a kinetic law, then it is scoped to the kinectic law only.

2-45

2 Modeling

Simulate Biological Variability of the Yeast G Protein Cycle Using
the Wild-Type and Mutant Strains

This example shows how to create and apply a variant to the G protein model of a wild-
type strain. The variant represents a parameter value for the G protein model of a
mutant strain. Thus, when you simulate the model without applying the variant, you see
results for the wild type strain, and when you simulate the model with the variant, you
see results for the mutant strain. This example uses the model described in Model of the
Yeast Heterotrimeric G Protein Cycle.

The value of the parameter kGd is 0.11 for the wild-type strain and 0.004 for the
mutant strain. To represent the mutant strain, you will store an alternate value of 0.004
for the kGd parameter in a variant object, and apply this variant when simulating the
model.

For information on variants, see “Variant Object” on page 2-40.

Load the gprotein.sbproj project, which includes the variable m1, a SimBiology model
object.

sbioloadproject gprotein

You can create a variant of the original model by specifying a different parameter value
for the kGd parameter of the model. First, add a variant to the m1 model object.

v1 = addvariant(m1,'mutant_strain');

Next, add a parameter kGd with a value of 0.004 to the variant object v1.

addcontent(v1,{'parameter','kGd','Value',0.004});

Simulate the wild type model.

[t,x,names] = sbiosimulate(m1);

Simulate the mutant strain model by applying the variant.

[tV,xV,names] = sbiosimulate(m1,v1);

Plot and compare the simulated results.

subplot(1,2,1)

plot(t,x);

2-46

 Simulate Biological Variability of the Yeast G Protein Cycle Using the Wild-Type and Mutant Strains

legend(names);

xlabel('Time');

ylabel('Amount');

title('Wild Type');

subplot(1,2,2)

plot(tV,xV);

legend(names);

xlabel('Time');

ylabel('Amount');

title('Mutant Strain');

2-47

2 Modeling

Create and Simulate a Model with a Custom Function

In this section...

“Overview” on page 2-48
“Create a Custom Function” on page 2-50
“Load the Example Model” on page 2-51
“Add the Custom Function to the Example Model” on page 2-51
“Define a Rule to Change Parameter Value” on page 2-51
“Add an Event to Reset the Solver at a Discontinuity” on page 2-52
“Simulate the Modified Model” on page 2-52

Overview

Prerequisites for the Example

This example assumes you have a working knowledge of:

• MATLAB desktop
• Creating and saving MATLAB programs

About the Example Model

This example uses the model described in Model of the Yeast Heterotrimeric G Protein
Cycle.

This table shows the reactions used to model the G protein cycle and the corresponding
rate parameters (rate constants) for each reaction. For reversible reactions, the forward
rate parameter is listed first.

No. Name Reaction1 Rate Parameters

1 Receptor-ligand interaction L + R <-> RL kRL, kRLm
2 Heterotrimeric G protein

formation
Gd + Gbg -> G kG1

3 G protein activation RL + G -> Ga + Gbg + RL kGa

2-48

 Create and Simulate a Model with a Custom Function

No. Name Reaction1 Rate Parameters

4 Receptor synthesis and
degradation

R <-> null kRdo, kRs

5 Receptor-ligand degradation RL -> null kRD1

6 G protein inactivation Ga -> Gd kGd

1 Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd = inactive
G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G = inactive Gbg:Gd
complex, Ga = active G-alpha-GTP

Assumptions of the Example

This example assumes that:

• An inhibitor (Inhib species) slows the inactivation of the active G protein (reaction 6
above, Ga –> Gd).

• The variation in the amount of inhibitor (Inhib species) is defined in a custom
function, inhibvalex.

• The inhibitor (Inhib species) affects the reaction by changing the amount of rate
parameter kGd.

About the Example

This example shows how to create and call a custom function in a SimBiology expression.
Specifically, it shows how to use a custom function in a rule expression.

About Using Custom Functions in SimBiology Expressions

You can use custom functions in:

• Reaction rate expressions (ReactionRate property)
• Rule expressions (Rule property)
• Event expressions (EventFcns property or Trigger property)

The requirements for using custom functions in SimBiology expressions are:

• Create a custom function. For more information, see function.
• Change the current folder to the folder containing your custom MATLAB file. Do

this by using the cd command or by using the Current Folder field in the MATLAB

2-49

2 Modeling

desktop toolbar. Alternatively, add the folder containing your file to the search path.
Do this by using the addpath command or see “Change Folders on the Search Path”.

• Call the custom function in a SimBiology reaction, rule, or event expression.

Tip If your rule or reaction rate expression is not continuous and differentiable, see
“Using Events to Address Discontinuities in Rule and Reaction Rate Expressions” on
page 2-38 before simulating your model.

Create a Custom Function

The following procedure creates a custom function, inhibvalex, which lets you specify
how the inhibitor amount changes over time. The inputs are time, the initial amount
of inhibitor, and a parameter that governs the amount of inhibitor. The output of the
function is the amount of inhibitor.

1 In the MATLAB desktop, select File > New > Script, to open the MATLAB Editor.
2 Copy and paste the following function declaration:

% inhibvalex.m

function Cp = inhibvalex(t, Cpo, kel)

% This function takes the input arguments t, Cpo, and kel

% and returns the value of the inhibitor Cp.

% You can later specify the input arguments in a

% SimBiology rule expression.

% For example in the rule expression, specify:

% t as time (a keyword recognized as simulation time),

% Cpo as a parameter that represents the initial amount of inhibitor,

% and kel as a parameter that governs the amount of inhibitor.

if t < 400

 Cp = Cpo*exp(-kel*(t));

else

 Cp = Cpo*exp(-kel*(t-400));

end

3 Save the file (name the file inhibvalex.m) in a directory that is on the MATLAB
search path, or to a directory that you can access.

4 If the location of the file is not on the MATLAB search path, change the working
directory to the file location.

2-50

 Create and Simulate a Model with a Custom Function

Load the Example Model

Load the gprotein example project, which includes the variable m1, a model object:

sbioloadproject gprotein

The m1 model object appears in the MATLAB Workspace.

Add the Custom Function to the Example Model

The following procedure creates a rule expression that calls the custom function,
inhibvalex, and specifies the three input values to this function.

1 Add a repeated assignment rule to the model that specifies the three input values to
the custom function, inhibvalex:

rule1 = addrule(m1, 'Inhib = inhibvalex(time, Cpo, Kel)',...

 'repeatedAssignment');

The time input is a SimBiology keyword recognized as simulation time
2 Create the two parameters used by the rule1 rule and assign values to them:

p1 = addparameter(m1, 'Cpo', 250);

p2 = addparameter(m1, 'Kel', 0.01);

3 Create the species used by the rule1 rule:

s1 = addspecies(m1.Compartments, 'Inhib');

Define a Rule to Change Parameter Value

The value of rate parameter kGd is affected by the amount of inhibitor present in
the system. Add a rule to the model to describe this action, but first change the
ConstantValue property of the parameter kGd so that it can be varied by a rule.

1 Change the ConstantValue property of the kGd parameter to false.

p3 = sbioselect(m1, 'Type', 'parameter', 'Name', 'kGd');

p3.ConstantValue = false;

2 Add a repeated assignment rule to the model to define how the kGd parameter is
affected by the Inhib species.

2-51

2 Modeling

rule2 = addrule(m1, 'kGd = 1/Inhib', 'repeatedAssignment');

Add an Event to Reset the Solver at a Discontinuity

The custom function, inhibvalex, introduces a discontinuity in the model when time =
400. To ensure accurate simulation results, add an event to the model to reset the solver
at the time of the discontinuity. Set the event to trigger at the time of the discontinuity
(time = 400). The event does not need to modify the model, so create an event function
that multiplies a species value by 1.

addevent(m1, 'time>=400', 'G=1*G');

Simulate the Modified Model

1 Configure the simulation settings (configset object) for the m1 model object to
log all states during the simulation.

cs = getconfigset(m1);

cs.RuntimeOptions.StatesToLog = 'all';

2 Simulate the model.

simDataObj = sbiosimulate(m1);

3 Plot the results.

sbioplot(simDataObj);

2-52

 Create and Simulate a Model with a Custom Function

The plot does not show the species of interest due to the wide range in species
amounts/concentrations.

4 Plot only the species of interest. Ga.

GaSimDataObj = selectbyname(simDataObj,'Ga');

sbioplot(GaSimDataObj);

2-53

2 Modeling

Notice the change in the profile of species Ga at time = 400 seconds (simulation
time). This is the time when the inhibitor amount is changed to reflect the re-
addition of inhibitor to the model.

5 Plot only the inhibitor (Inhib species).

InhibSimDataObj = selectbyname(simDataObj,'Inhib');

sbioplot(InhibSimDataObj)

2-54

 Create and Simulate a Model with a Custom Function

See Also
addpath | cd | function

More About
• “Change Folders on the Search Path”

2-55

2 Modeling

View Model Equations

You can view the system of equations that SimBiology creates when you build a model
using reactions, rules, events, variants, and doses. Viewing model equations is useful for:

• Publishing purposes
• Model debugging

For details, see the getequations method of a Model object or the “Equations View” on
page 1-43 from the SimBiology desktop.

2-56

 Component Usage

Component Usage

SimBiology lets you find species, parameters, and compartments that are not used in a
model. You can also query how a particular quantity is used by other expressions such as
a parameter being used as a reaction rate constant or species being used in an event.

From the command line, use the findUnusedComponents function to look for unused
model components and the findUsages function to see how a component is used in
expressions. From the SimBiology desktop on page 1-21, select Remove Unused on the
Model tab to delete unused quantities. To look for usages of a quantity, select Show
Usages.

Species Usage

A species is used when it is referenced in any of the following properties of other
components:

• The Reaction or ReactionRate property of a reaction object,
• The ParameterVariableNames or SpeciesVariableNames property of a

KineticLaw object,
• The Rule property of a rule object,
• The Trigger or EventFcns property of an event object, and
• The TargetName property of a ScheduleDose object or RepeatDose object.

Parameter Usage

A parameter is used when it is referenced in any of the following properties of other
components:

• The ReactionRate property of a reaction object,
• The ParameterVariableNames property of a KineticLaw object,
• The Rule property of a rule object,
• The Trigger or EventFcns property of an event object,
• The Content property of a variant object, and
• The DurationParameterName or LagParameterName property of a ScheduleDose

object or RepeatDose object.

2-57

2 Modeling

Compartment Usage

A compartment is used when it is referenced in any of the following properties of other
components:

• The Parent property of a species object,
• The Owner property of a compartment object,
• The ReactionRate property of a reaction object,
• The ParameterVariableNames property of a KineticLaw object,
• The Rule property of a rule object,
• The Trigger or EventFcns property of an event object, and
• The Content property of a variant object.

Unit and UnitPrefix Usage

A unit or unit prefix is used when it is referenced in any of the following properties of
other components:

• The Composition property of all units in the BuiltInLibrary and
UserDefinedLibrary,

• The InitialAmountUnits property of all species in the specified models,
• The CapacityUnits property of all compartments in the specified models,
• The ValueUnits property of all parameters in the specified models,
• The TimeUnits property of all specified doses,
• The AmountUnits property of all specified doses, and
• The RateUnits property of all specified doses.

Abstract Kinetic Law Usage

An abstract kinetic law object aklObj can only be used by a reaction object robj. It is
used when:

• The KineticLaw property of the reaction object is not empty, and
• robj.KineticLaw.KineticLawName matches the name of the abstract kinetic law

aklObj.Name.

2-58

 Component Usage

See Also
findUnusedComponents | findUsages(AbstractKineticLaw)
| findUsages(species,parameter,compartment) |
findUsages(unit,unitprefix)

More About
• “SimBiology Desktop”
• “Model Views” on page 1-21

2-59

3

Structural Analysis

• “Overview of Structural Analysis” on page 3-2
• “Model Verification” on page 3-3
• “Verifying a Model” on page 3-5
• “Conserved Moiety Determination” on page 3-6
• “Determining Conserved Moieties” on page 3-9
• “Determining the Adjacency Matrix for a Model” on page 3-12
• “Determining the Stoichiometry Matrix for a Model” on page 3-14
• “Selecting Absolute Tolerance and Relative Tolerance for Simulation” on page 3-17

3 Structural Analysis

Overview of Structural Analysis

Structural analyses let you verify and investigate the structure of your model and its
quantities and expressions before actually simulating the model. These static inspections
help you to:

• Confirm the model is ready for simulation.
• Better understand the relationships between quantities and expressions in the model.

For more information, see:

• “Model Verification” on page 3-3
• “Conserved Moiety Determination” on page 3-6
• “Determining the Adjacency Matrix for a Model” on page 3-12
• “Determining the Stoichiometry Matrix for a Model” on page 3-14

3-2

 Model Verification

Model Verification

In this section...

“What is Model Verification?” on page 3-3
“When to Verify a Model” on page 3-3
“Verifying That a Model Has No Warnings or Errors” on page 3-4
“More About” on page 3-4

What is Model Verification?

SimBiology has functionality that helps you find and fix warnings that you might need
to be aware of, and errors that would prevent you from simulating and analyzing your
model.

Model verification checks many aspects of the model including:

• Model structure
• Validity of mathematical expressions
• Dimensional analysis
• Unit conversion issues

When to Verify a Model

You can check your model for warnings and errors at any time when constructing or
working with your model. For example:

• Verify your model during construction to ensure that the model is complete.
• Verify the model after changing simulation settings, dimensional analysis settings, or

unit conversion settings.

Analyses such as simulation, scanning, and parameter fitting automatically verify a
model.

Tip Repeatedly running a task using a different variant or setting a different value for
the InitialAmount property of a species, the Capacity property of a compartment, or
the Value property of a parameter, generates warnings only the first time you simulate

3-3

3 Structural Analysis

a model. Use the verification functionality described in this section to display warnings
again.

Verifying That a Model Has No Warnings or Errors

Use the verify method to see a list of warnings and errors in your model.

Use the sbiolastwarning and sbiolasterror functions to return the last warning
and last error encountered during verification.

More About

For an example of verifying a model, see “Verifying a Model” on page 3-5.

3-4

 Verifying a Model

Verifying a Model

1 Create a model with a reaction that references K1, an undefined parameter:

% Create a model named example

model = sbiomodel('example');

% Add a compartment named cell to model

compartment = addcompartment(model, 'cell');

% Add two species, A and B, to the cell compartment

species_1 = addspecies(compartment, 'A');

species_2 = addspecies(compartment, 'B');

% Add the reaction A -> B to the model

reaction = addreaction(model, 'A -> B', 'ReactionRate', 'K1');

2 Verify the model to check for warnings and errors:

verify(model)

??? --> Error reported from Expression Validation:

The name 'K1' in reaction 'A -> B' does not refer to any in-scope species,

parameters, or compartments.

3 Address the error by defining the parameter K1:

% Add a parameter, K1, to the model with a value of 3

parameter = addparameter(model, 'K1', 3);

4 Verify the model again:

verify(model)

3-5

3 Structural Analysis

Conserved Moiety Determination

In this section...

“Introduction to Moiety Conservation” on page 3-6
“Algorithms for Conserved Cycle Calculations” on page 3-6
“More About” on page 3-8

Introduction to Moiety Conservation

Conserved moieties represent quantities that are conserved in a system, regardless of the
individual reaction rates.

Consider this simple network:

reaction 1: A -> B

reaction 2: B -> C

reaction 3: C -> A

Regardless of the rates of reactions 1, 2, and 3, the quantity A + B + C is conserved
throughout the dynamic evolution of the system. This conservation is termed structural
because it depends only on the structure of the network, rather than on details such as
the kinetics of the reactions involved. In the context of systems biology, such a conserved
quantity is sometimes referred to as a conserved moiety. A typical, real-world example
of a conserved moiety is adenine in its various forms ATP, ADP, AMP, etc. Finding
and analyzing conserved moieties can yield insights into the structure and function
of a biological network. In addition, for the quantitative modeler, conserved moieties
represent dependencies that can be removed to reduce a system’s dimensionality, or
number of dynamic variables. In the previous simple network, in principle, it is only
necessary to calculate the time courses for A and B. After this is done, C is fixed by the
conservation relation.

Algorithms for Conserved Cycle Calculations

The sbioconsmoiety function analyzes conservation relationships in a model by
calculating a complete set of linear conservation relations for the species in the model
object.

sbioconsmoiety lets you specify one of three algorithms based on the nature of the
model and the required results:

3-6

 Conserved Moiety Determination

• 'qr' — sbioconsmoiety uses an algorithm based on QR factorization. From a
numerical standpoint, this is the most efficient and reliable approach.

• 'rreduce' — sbioconsmoiety uses an algorithm based on row reduction, which
yields better numbers for smaller models. This is the default.

• 'semipos' — sbioconsmoiety returns conservation relations in which all
the coefficients are greater than or equal to zero, permitting a more transparent
interpretation in terms of physical quantities.

For larger models, the QR-based method is recommended. For smaller models, row
reduction or the semipositive algorithm may be preferable. For row reduction and
QR factorization, the number of conservation relations returned equals the row rank
degeneracy of the model object's stoichiometry matrix. The semipositive algorithm can
return a different number of relations. Mathematically speaking, this algorithm returns
a generating set of vectors for the space of semipositive conservation relations.

In some situations, you may be interested in the dimensional reduction of your model
via conservation relations. Recall the simple model, presented in “Introduction to
Moiety Conservation” on page 3-6, that contained the conserved cycle A + B + C.
Given A and B, C is determined by the conservation relation; the system can be thought
of as having only two dynamic variables rather than three. The 'link' algorithm
specification caters to this situation. In this case, sbioconsmoiety partitions the
species in the model into independent and dependent sets and calculates the dependence
of the dependent species on the independent species.

Consider a general system with an n-by-m stoichiometry matrix N of rank k, and suppose
that the rows of N are permuted (which is equivalent to permuting the species ordering)
so that the first k rows are linearly independent. The last n – k rows are then necessarily
dependent on the first k rows.

The matrix N can be split into the following independent and dependent parts,

N =
N

N

R

D

Ê

Ë
Á

ˆ

¯
˜

where R in the independent submatrix NR denotes 'reduced'; the (n – k)-by-k link matrix
L0 is defined so that ND = L0*NR. In other words, the link matrix gives the dependent
rows ND of the stoichiometry matrix, in terms of the independent rows NR. Because each
row in the stoichiometry matrix corresponds to a species in the model, each row of the

3-7

3 Structural Analysis

link matrix encodes how one dependent species is determined by the k independent
species.

More About

For examples of determining conserved moieties, see:

• “Determining Conserved Moieties” on page 3-9
• Finding Conserved Quantities in a Pathway Model

3-8

 Determining Conserved Moieties

Determining Conserved Moieties

1 Load the Goldbeter Mitotic Oscillator project, which includes the variable m1, a
model object:

sbioloadproject Goldbeter_Mitotic_Oscillator_with_reactions

The m1 model object appears in the MATLAB Workspace.
2 Display the species information:

m1.Compartments.Species

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:

 1 unnamed C 0.01

 2 unnamed M 0.01

 3 unnamed Mplus 0.99

 4 unnamed Mt 1

 5 unnamed X 0.01

 6 unnamed Xplus 0.99

 7 unnamed Xt 1

 8 unnamed V1 0

 9 unnamed V3 0

 10 unnamed AA 0

3 Display the reaction information:

m1.Reactions

SimBiology Reaction Array

 Index: Reaction:

 1 AA -> C

 2 C -> AA

 3 C + X -> AA + X

 4 Mplus + C -> M + C

 5 M -> Mplus

 6 Xplus + M -> X + M

 7 X -> Xplus

4 Use the simplest form of the sbioconsmoiety function and display the results.
The default call to sbioconsmoiety, in which no algorithm is specified, uses an
algorithm based on row reduction.

3-9

3 Structural Analysis

[g sp] = sbioconsmoiety(m1)

g =

 0 1 1 0 0 0

 0 0 0 1 1 0

 0 0 0 0 0 1

sp =

 'C'

 'M'

 'Mplus'

 'X'

 'Xplus'

 'AA'

The columns in g are labeled by the species sp. Thus the first row describes the
conserved relationship, M + Mplus. Notice that the third row indicates that the
species AA is conserved, which is because AA is constant (ConstantAmount = 1).

5 Call sbioconsmoiety again, this time specifying the semipositive algorithm to
explore conservation relations in the model. Also specify to return the conserved
moieties in a cell array of character vectors, instead of a matrix.

cons_rel = sbioconsmoiety(m1,'semipos','p')

cons_rel =

 'AA'

 'X + Xplus'

 'M + Mplus'

6 Use the 'link' option to study the dependent and independent species.

[SI,SD,L0,NR,ND] = sbioconsmoiety(m1, 'link');

7 Show the list of independent species:

SI

SI =

 'C'

 'M'

3-10

 Determining Conserved Moieties

 'X'

8 Show the list of dependent species:

SD

SD =

 'Mplus'

 'Xplus'

 'AA'

9 Show the link matrix relating SD and SI by converting the L0 output from a sparse
matrix to a full matrix:

L0_full = full(L0)

L0_full =

 0 -1.0000 0

 0 0 -1.0000

 0 0 0

10 Show the independent stoichiometry matrix, NR by converting the NR output from a
sparse matrix to a full matrix:

NR_full = full(NR)

NR_full =

 1 -1 -1 0 0 0 0

 0 0 0 1 -1 0 0

 0 0 0 0 0 1 -1

11 Show the dependent stoichiometry matrix, ND by converting the ND output from a
sparse matrix to a full matrix:

ND_full = full(ND)

ND_full =

 0 0 0 -1 1 0 0

 0 0 0 0 0 -1 1

 0 0 0 0 0 0 0

3-11

3 Structural Analysis

Determining the Adjacency Matrix for a Model

In this section...

“What Is an Adjacency Matrix?” on page 3-12
“Retrieving an Adjacency Matrix for a Model” on page 3-12

What Is an Adjacency Matrix?

An adjacency matrix lets you easily determine:

• The reactants and products in a specific reaction in a model
• The reactions that a specific species is part of, and whether the species is a reactant or

product in that reaction

An adjacency matrix is an N-by-N matrix, where N equals the total number of species
and reactions in a model. Each row corresponds to a species or reaction, and each column
corresponds to a species or reaction.

The matrix indicates which species and reactions are involved as reactants and products:

• Reactants are represented in the matrix with a 1 at the appropriate location (row of
species, column of reaction). Reactants appear above the diagonal.

• Products are represented in the matrix with a 1 at the appropriate location (row of
reaction, column of species). Products appear below the diagonal.

• All other locations in the matrix contain a 0.

For example, if a model object contains one reaction equal to A + B -> C and the
Name property of the reaction is R1, the adjacency matrix is:

 A B C R1

 A 0 0 0 1

 B 0 0 0 1

 C 0 0 0 0

 R1 0 0 1 0

Retrieving an Adjacency Matrix for a Model

Retrieve an adjacency matrix for a model by passing the model object as an input
argument to the getadjacencymatrix method.

3-12

 Determining the Adjacency Matrix for a Model

1 Read in m1, a model object, using sbmlimport:

m1 = sbmlimport('lotka.xml');

2 Get the adjacency matrix for m1:

[M, Headings] = getadjacencymatrix(m1)

M =

 (5,1) 1

 (5,2) 1

 (6,3) 1

 (7,4) 1

 (1,5) 1

 (2,5) 1

 (2,6) 1

 (3,6) 1

 (3,7) 1

Headings =

 'x'

 'y1'

 'y2'

 'z'

 'Reaction1'

 'Reaction2'

 'Reaction3'

3 Convert the adjacency matrix from a sparse matrix to a full matrix to more easily
see the relationships between species and reactions:

M_full = full(M)

M_full =

 0 0 0 0 1 0 0

 0 0 0 0 1 1 0

 0 0 0 0 0 1 1

 0 0 0 0 0 0 0

 1 1 0 0 0 0 0

 0 0 1 0 0 0 0

 0 0 0 1 0 0 0

3-13

3 Structural Analysis

Determining the Stoichiometry Matrix for a Model

In this section...

“What Is a Stoichiometry Matrix?” on page 3-14
“Retrieving a Stoichiometry Matrix for a Model” on page 3-15

What Is a Stoichiometry Matrix?

A stoichiometry matrix lets you easily determine:

• The reactants and products in a specific reaction in a model, including the
stoichiometric value of the reactants and products

• The reactions that a specific species is part of, and whether the species is a reactant or
product in that reaction

A stoichiometry matrix is an M-by-R matrix, where M equals the total number of species
in a model, and R equals the total number of reactions in a model. Each row corresponds
to a species, and each column corresponds to a reaction.

The matrix indicates which species and reactions are involved as reactants and products:

• Reactants are represented in the matrix with their stoichiometric value at the
appropriate location (row of species, column of reaction). Reactants appear as negative
values.

• Products are represented in the matrix with their stoichiometric value at the
appropriate location (row of species, column of reaction). Products appear as positive
values.

• All other locations in the matrix contain a 0.

For example, consider a model object containing two reactions. One reaction (named
R1) is equal to 2 A + B -> 3 C, and the other reaction (named R2) is equal to B + 3 D
-> 4 A. The stoichiometry matrix is:

 R1 R2

A -2 4

B -1 -1

C 3 0

D 0 -3

3-14

 Determining the Stoichiometry Matrix for a Model

Retrieving a Stoichiometry Matrix for a Model

Retrieve a stoichiometry matrix for a model by passing the model object as an input
argument to the getstoichmatrix method.

1 Read in m1, a model object, using sbmlimport:

m1 = sbmlimport('lotka.xml');

2 Get the stoichiometry matrix for m1:

[M,objSpecies,objReactions] = getstoichmatrix(m1)

M =

 (2,1) 1

 (2,2) -1

 (3,2) 1

 (3,3) -1

 (4,3) 1

objSpecies =

 'x'

 'y1'

 'y2'

 'z'

objReactions =

 'Reaction1'

 'Reaction2'

 'Reaction3'

3 Convert the stoichiometry matrix from a sparse matrix to a full matrix to more
easily see the relationships between species and reactions:

M_full = full(M)

M_full =

 0 0 0

 1 -1 0

 0 1 -1

3-15

3 Structural Analysis

 0 0 1

3-16

 Selecting Absolute Tolerance and Relative Tolerance for Simulation

Selecting Absolute Tolerance and Relative Tolerance for Simulation

In this section...

“Algorithm” on page 3-17
“Absolute Tolerance Scaling” on page 3-18

SimBiology uses AbsoluteTolerance and RelativeTolerance to control the accuracy
of integration during simulation. Specifically, AbsoluteTolerance is used to control the
largest allowable absolute error at any step during simulation. It controls the error when
a solution is small. Intuitively, when the solution approaches 0, AbsoluteTolerance
is the threshold below which you do not worry about the accuracy of the solution since
it is effectively 0. RelativeTolerance controls the relative error of a single step of the
integrator. Intuitively, it controls the number of significant digits in a solution, except
when it is smaller than the absolute tolerance, and - ()log10 RelativeTolerance is the
number of correct digits.

Algorithm

At each simulation step i, the solver estimates the local error e in the state j of the
simulation. The solver reduces the size of time step i until the error of the state satisfies:

e i j RelativeTolerance y i j AbsoluteTolerance i j, max , , ,() £ * () ()())

Thus at state values of larger magnitude, the accuracy is determined by
RelativeTolerance. As the state values approach zero, the accuracy is controlled by
AbsoluteTolerance.

The correct choice of values for RelativeTolerance and AbsoluteTolerance varies
depending on the problem. The default values may work for first trials of the simulation.
As you adjust the tolerances, consider that there are trade-offs between speed and
accuracy:

• If the simulation takes too long, you can increase (or loosen) the values of
RelativeTolerance and AbsoluteTolerance at the cost of some accuracy.

• If the results seem inaccurate, you can decrease (or tighten) the relative tolerance
values by dividing with 10N, where N is a real positive number. But this tends to slow
down the solver.

3-17

3 Structural Analysis

• If the magnitude of the state values is high, you can decrease the relative tolerance to
get more accurate results.

Absolute Tolerance Scaling

How SimBiology uses AbsoluteTolerance to determine the error depends on
whether the AbsoluteToleranceScaling property is enabled. By default,
AbsoluteToleranceScaling is enabled which means each state has its own absolute
tolerance that may increase over the course of simulation:

AbsoluteTolerance i j CSAbsTol Scale i j, * ,() = ()

CSAbsTol is the AbsoluteTolerance property defined in SolverOptions of the active
configuration set object.

For a state that has a nonzero initial value, the scale is the maximum magnitude over
the state, as seen over the simulation thus far:

Scale i j y i j, max (: ,)() = ()1

For a state that has an initial value of zero, the scale is estimated as the state value after
taking a trial step of size AbsoluteToleranceStepSize using the Euler method. Let
us call this value ye(j). Then:

Scale i j ye j y i j, max (); (: ,)() = []()2

If an initial state is zero and has no dynamic at time = 0, then:

AbsoluteTolerance i j CSAbsTol,() =

Doses, events, and initial assignment rules at simulation time = 0 are not considered
when calculating absolute tolerance scaling.

More About
• “Model Simulation” on page 4-2
• “Choosing a Simulation Solver” on page 4-8
• “Ordinary Differential Equations”

3-18

4

Simulation and Analysis

• “Model Simulation” on page 4-2
• “Deriving ODEs from Reactions” on page 4-4
• “Simulation and Analysis” on page 4-7
• “Choosing a Simulation Solver” on page 4-8
• “SUNDIALS Solvers” on page 4-9
• “Stochastic Solvers” on page 4-10
• “Ensemble Runs of Stochastic Simulations” on page 4-15
• “Configuring Simulation Settings” on page 4-16
• “Create and Simulate a Simple Model” on page 4-17
• “Simulate the Yeast Heterotrimeric G Protein Cycle” on page 4-22
• “Sensitivity Calculation” on page 4-27
• “Calculate Sensitivities” on page 4-31
• “Identify Important Network Components from an Apoptosis Model Using Sensitivity

Analysis” on page 4-35
• “Perform a Parameter Scan” on page 4-40
• “Nonlinear Mixed-Effects Modeling” on page 4-44
• “Nonlinear Regression” on page 4-53
• “Supported Methods for Parameter Estimation” on page 4-60
• “Error Models” on page 4-62
• “Progress Plot” on page 4-63
• “Estimate Parameters of a G protein Model” on page 4-69
• “Accelerating Model Simulations and Analyses” on page 4-81
• “Non-compartmental Analysis” on page 4-84

4 Simulation and Analysis

Model Simulation

SimBiology lets you simulate the dynamic behavior of a model. Before and during
simulation, SimBiology performs a series of steps including converting the model
reactions and rate rules into a set of ordinary differential equations (ODEs) that
mathematically describe the model dynamics.

Specifically, before simulation begins, SimBiology:

1 Verifies the model. For details, see “Model Verification” on page 3-3.
2 Determines the initial conditions, that is, the quantity values at the beginning of

simulation. In particular, SimBiology first initializes the quantity values based on
the values specified in the model. Second, it updates the values by replacing them
with the corresponding alternate values from variants if any. Then it updates the
values based on the initial assignments and repeated assignments. SimBiology
evaluates initial assignments in the order they appear in the model. Hence their
effects can change when you reorder them. On the other hand, repeated assignments
are evaluated as a set of simultaneous constraints, and their order do not affect the
final quantity values. For details, see “Definitions and Evaluations of Rules” on page
2-23.

3 Constructs the ODEs based on model reactions and rate rules. Specifically, the left-
hand-side (LHS) of each ODE represents the time-derivative of a model quantity.
The right-hand-side (RHS) is defined using reaction fluxes that are derived from
reaction rates. For details, see “Deriving ODEs from Reactions” on page 4-4.

4 Converts doses to state transitions that occur at specific simulation times.
5 Converts event functions to state transitions that depend on the conditions specified

in the event triggers.

When the simulation begins, that is, at simulation time = 0, SimBiology:

1 Applies any state transitions due to dosing specified at simulation time = 0.
2 Updates values based on repeated assignments.
3 Logs the updated quantity values.

Note: Events cannot cause transitions at time = 0 since events only apply when a trigger
changes from false to true. If a trigger is true at simulation time = 0, then no transition
has occurred and the event is not triggered.

4-2

 Model Simulation

During the simulation, SimBiology uses a solver to compute solutions for ODEs at
different times. Specifically, the solver determines appropriate time steps and performs
the following at each step.

1 Updates values for any repeated assignments.
2 Checks each event’s trigger condition. If it switches from false to true at this time

step, then it applies the state transitions according to the event functions, and
updates values for any repeated assignments.

3 Logs the updated quantity values.

To see the system of ODEs of a model, use getequations in the command line or open the
Equations View on page 1-43 in the SimBiology desktop.

Note: If a model has algebraic equations, you must specify one of the following
differential-algebraic-equation (DAE) solvers: sundials, ode15s, ode23t. SimBiology
converts the algebraic equations to algebraic constraints and solves them along with the
rest of ODEs. For details about available solvers, see “Choosing a Simulation Solver” on
page 4-8.

See Also
Equations View on page 1-43 | getequations

Related Examples
• “Simulate the Yeast Heterotrimeric G Protein Cycle” on page 4-22
• “Create and Simulate a Simple Model” on page 4-17

More About
• “Simulation”
• “Choosing a Simulation Solver” on page 4-8
• “Configuring Simulation Settings” on page 4-16

4-3

4 Simulation and Analysis

Deriving ODEs from Reactions

For model simulation, SimBiology derives ordinary differential equations (ODEs) from
model reactions using mass-balance principles. The left-hand-side (LHS) of each ODE
is the time-derivative of a model quantity and the right-hand-side (RHS) is defined
using reaction fluxes that are derived from reaction rates and rate rules. In other words,
SimBiology represents a system of ODEs as:

&x S v= ◊

&x is an M-by-1 vector containing the rates of change for model quantities, S is an M-by-R
stoichiometry matrix on page 3-14, v is an R-by-1 flux vector. M equals the total number
of species, and R equals the total number of reactions in the model

During the conversion of model reactions into ODEs, SimBiology performs a dimensional
analysis to ensure each reaction flux has the dimension of substance/time such as
amount/time or mass/time. If the reaction rate has the dimension of concentration/
time, then SimBiology multiplies it by the compartment volume to get the reaction flux.
If the reaction rate has the dimension of substance/time, then the flux is identical
to the rate, and no volume-correction is performed. If there are no units specified
with the model, the default dimension for a species (DefaultSpeciesDimension) is
concentration, and that for a flux is substance/time. For such cases, the ODE
is the flux divided by a compartment volume to make the dimension of LHS and RHS
consistent. See the following figure for an illustration.

Suppose there is a reaction x —> y, with the reaction rate R1. The following figure
explains the dimensional analysis performed by SimBiology to make the dimensions of
LHS and RHS of an ODE consistent.

4-4

 Deriving ODEs from Reactions

See Also
getstoichmatrix (model)

4-5

4 Simulation and Analysis

More About
• “Model Simulation” on page 4-2
• “Determining the Stoichiometry Matrix for a Model” on page 3-14

4-6

 Simulation and Analysis

Simulation and Analysis

After creating models in SimBiology, you can simulate and analyze them.

Typical Workflow

To simulate a model, SimBiology:

1 Converts the model expressions and quantities to a system of differential equations.
2 Uses deterministic or stochastic solvers to numerically solve these equations.
3 Determines the changes in quantity values over time.

For more information, see “Model Simulation” on page 4-2.

SimBiology also lets you analyze models. These analyses include a basic simulation of the
model as well as additional evaluations such as:

• “Sensitivity Calculation” on page 4-27
• “Perform a Parameter Scan” on page 4-40
• Parameter estimation using “Nonlinear Regression” on page 4-53 and “Nonlinear

Mixed-Effects Modeling” on page 4-44

4-7

4 Simulation and Analysis

Choosing a Simulation Solver

To simulate a model, the SimBiology software converts a model to a system of differential
equations. It then uses a solver function to compute solutions for these equations at
different time intervals, giving the model's states and outputs over a span of time.

Available solvers are:

• ODE Solvers — These include Nonstiff Deterministic Solvers and Stiff Deterministic
Solvers. The solver functions implement numerical integration methods for solving
initial value problems for ordinary differential equations (ODEs). Beginning at the
initial time with initial conditions, they step through the time interval, computing a
solution at each time step. If the solution for a time step satisfies the solver's error
tolerance criteria, it is a successful step. Otherwise, it is a failed attempt; the solver
shrinks the step size and tries again. For more information, see ODE Solvers.

• SUNDIALS Solvers — At a fundamental level the core algorithms for the
SUNDIALS solvers are similar to those for some of the solvers in the MATLAB
ODE suite and work as described above in ODE Solvers. For more information, see
“SUNDIALS Solvers” on page 4-9.

• Stochastic Solvers — Use with models containing a small number of molecules.
Stochastic solvers include stochastic simulation algorithm, explicit tau-leaping
algorithm, and implicit tau-leaping algorithm. For more information, see “Stochastic
Solvers” on page 4-10.

Related Examples
• “Simulate the Yeast Heterotrimeric G Protein Cycle” on page 4-22
• “Create and Simulate a Simple Model” on page 4-17

More About
• “Model Simulation” on page 4-2
• ODE Solvers
• “SUNDIALS Solvers” on page 4-9
• “Stochastic Solvers” on page 4-10

4-8

 SUNDIALS Solvers

SUNDIALS Solvers

SUNDIALS (Suite of Nonlinear and Differential/Algebraic Equation Solvers) are part
of a freely available third-party package developed at Lawrence Livermore National
Laboratory. All other ODE solvers used for simulation of SimBiology models, such as
ode45 and ode15s, are part of the MATLAB ODE suite.

When you specify sundials for the solver, the software chooses one of two SUNDIALS
solvers, CVODE or IDA, as appropriate for your model:

• CVODE is a solver for systems of ODEs, both nonstiff and stiff. This is used when a
model has no algebraic rules.

• IDA is a differential-algebraic equation (DAE) solver, used when one or more
algebraic rules are present.

For more information on the SUNDIALS solvers, see http://www.llnl.gov/casc/
sundials/description/description.html.

More About
• “Model Simulation” on page 4-2
• ODE Solvers
• “Stochastic Solvers” on page 4-10

4-9

http://www.llnl.gov/
http://www.llnl.gov/
http://www.llnl.gov/casc/sundials/description/description.html
http://www.llnl.gov/casc/sundials/description/description.html

4 Simulation and Analysis

Stochastic Solvers

In this section...

“When to Use Stochastic Solvers” on page 4-10
“Model Prerequisites for Simulating with a Stochastic Solver” on page 4-10
“What Happens During a Stochastic Simulation?” on page 4-11
“Stochastic Simulation Algorithm (SSA)” on page 4-11
“Explicit Tau-Leaping Algorithm” on page 4-11
“Implicit Tau-Leaping Algorithm” on page 4-12
“References” on page 4-13

When to Use Stochastic Solvers

The stochastic simulation algorithms provide a practical method for simulating reactions
that are stochastic in nature. Models with a small number of molecules can realistically
be simulated stochastically, that is, allowing the results to contain an element of
probability, unlike a deterministic solution.

Model Prerequisites for Simulating with a Stochastic Solver

Model prerequisites include:

• All reactions in the model must have their KineticLaw property set to MassAction.
• If your model contains events, you can simulate using the stochastic ssa solver. Other

stochastic solvers do not support events.
• Your model must not contain doses. No stochastic solvers support doses.

Additionally, if you perform an individual or population fitting on a model whose
configset object specifies a stochastic solver and options, be aware that during the
fitting SimBiology temporarily changes:

• SolverType property to the default solver of ode15s
• SolverOptions property to the options last configured for a deterministic solver

4-10

 Stochastic Solvers

What Happens During a Stochastic Simulation?

During a stochastic simulation of a model, the software ignores any rate, assignment, or
algebraic rules if present in the model. Depending on the model, stochastic simulations
can require more computation time than deterministic simulations.

Tip When simulating a model using a stochastic solver, you can increase the
LogDecimation property of the configset object to record fewer data points and
decrease run time.

Stochastic Simulation Algorithm (SSA)

The Chemical Master Equation (CME) describes the dynamics of a chemical system
in terms of the time evolution of probability distributions. Directly solving for this
distribution is impractical for most realistic problems. The stochastic simulation
algorithm (SSA) instead efficiently generates individual simulations that are consistent
with the CME, by simulating each reaction using its propensity function. Thus, analyzing
multiple stochastic simulations to determine the probability distribution is more efficient
than directly solving the CME.

Advantage

• This algorithm is exact.

Disadvantages

• Because this algorithm evaluates one reaction at a time, it might be too slow for
models with a large number of reactions.

• If the number of molecules of any reactants is huge, it might take a long time to
complete the simulation.

Explicit Tau-Leaping Algorithm

Because the stochastic simulation algorithm might be too slow for many practical
problems, this algorithm was designed to speed up the simulation at the cost of some
accuracy. The algorithm treats each reaction as being independent of the others. It
automatically chooses a time interval such that the relative change in the propensity
function for each reaction is less than your error tolerance. After selecting the time

4-11

4 Simulation and Analysis

interval, the algorithm computes the number of times each reaction occurs during
the time interval and makes the appropriate changes to the concentration of various
chemical species involved.

Advantages

• This algorithm can be orders of magnitude faster than the SSA.
• You can use this algorithm for large problems (if the problem is not numerically stiff).

Disadvantages

• This algorithm sacrifices some accuracy for speed.
• This algorithm is not good for stiff models.
• You need to specify the error tolerance so that the resulting time steps are of the

order of the fastest time scale.

Implicit Tau-Leaping Algorithm

Like the explicit tau-leaping algorithm, the implicit tau-leaping algorithm is also an
approximate method of simulation designed to speed up the simulation at the cost of
some accuracy. It can handle numerically stiff problems better than the explicit tau-
leaping algorithm. For deterministic systems, a problem is said to be numerically stiff
if there are “fast” and “slow” time scales present in the system. For such problems,
the explicit tau-leaping method performs well only if it continues to take small time
steps that are of the order of the fastest time scale. The implicit tau-leaping method can
potentially take much larger steps and still be stable. The algorithm treats each reaction
as being independent of others. It automatically selects a time interval such that the
relative change in the propensity function for each reaction is less than the user-specified
error tolerance. After selecting a time interval, the algorithm computes the number of
times each reaction occurs during the time interval and makes the appropriate changes
to the concentration of various chemical species involved.

Advantages

• This algorithm can be much faster than the SSA. It is also usually faster than the
explicit tau-leaping algorithm.

• You can use this algorithm for large problems and also for numerically stiff problems.
• The total number of steps taken is usually less than the explicit-tau-leaping

algorithm.

4-12

 Stochastic Solvers

Disadvantages

• This algorithm sacrifices some accuracy for speed.
• There is a higher computational burden for each step as compared to the explicit tau-

leaping algorithm. This leads to a larger CPU time per step.
• This method often dampens perturbations of the slow manifold leading to a reduced

state variance about the mean.

References

[1] Gibson M.A., Bruck J. (2000), “Exact Stochastic Simulation of Chemical Systems with
Many Species and Many Channels,” Journal of Physical Chemistry, 105:1876–
1899.

[2] Gillespie D. (1977), “Exact Stochastic Simulation of Coupled Chemical Reactions,” The
Journal of Physical Chemistry, 81(25): 2340–2361.

[3] Gillespie D. (2000), “The Chemical Langevin Equation,” Journal of Chemical Physics,
113(1): 297–306.

[4] Gillespie D. (2001), “Approximate Accelerated Stochastic Simulation of Chemically
Reacting Systems,” Journal of Chemical Physics,115(4):1716–1733.

[5] Gillespie D., Petzold L. (2004), “Improved Leap-Size Selection for Accelerated
Stochastic Simulation,” Journal of Chemical Physics, 119:8229–8234

[6] Rathinam M., Petzold L., Cao Y., Gillespie D. (2003), “Stiffness in Stochastic
Chemically Reacting Systems: The Implicit Tau-Leaping Method,” Journal of
Chemical Physics, 119(24):12784–12794.

[7] Moler, C. (2003), “Stiff Differential Equations Stiffness is a subtle, difficult, and
important concept in the numerical solution of ordinary differential equations,”
MATLAB News & Notes.

Related Examples
• Analysis of Stochastic Ensemble Data in SimBiology

More About
• “Ensemble Runs of Stochastic Simulations” on page 4-15

4-13

4 Simulation and Analysis

• “Model Simulation” on page 4-2
• “Choosing a Simulation Solver” on page 4-8

4-14

 Ensemble Runs of Stochastic Simulations

Ensemble Runs of Stochastic Simulations

Because stochastic simulations rely on an element of probability, sequential runs produce
different results. Therefore, multiple stochastic runs are needed to determine the
probability distribution of the simulation results.

Ensemble runs perform multiple simulations of a model using a stochastic solver. They
let you gather data from multiple stochastic runs of the model so you can compare and
analyze fluctuations in the behavior of a model over repeated stochastic simulations.

Running Ensemble Simulations

The following functions let you perform and analyze ensemble runs at the command line:

• sbioensemblerun — Perform a stochastic ensemble run of the MATLAB model
object.

• sbioensembleplot — Show a 2-D distribution plot or a 3-D shaded plot of the time
varying distribution of one or more specified species.

• sbioensemblestats — Get mean and variance as a function of time for all the
species in the model used to generate ensemble data by running sbioensemblerun.

More About
• “Stochastic Solvers” on page 4-10
• “Model Simulation” on page 4-2
• “Choosing a Simulation Solver” on page 4-8

4-15

4 Simulation and Analysis

Configuring Simulation Settings

A model has a configuration set (Configset object) associated with it to control the
simulation. You can edit the properties of a Configset object to control all aspects of
the simulation, including:

• Stop time (StopTime, MaximumNumberOfLogs, and MaximumWallClock properties)
• Time units (TimeUnits property)
• Solver and error tolerances (SolverType and SolverOptions properties)
• Maximum time step size (MaxStep property)
• Data to record (RuntimeOptions property)
• Frequency of data recording (OutputTimes and LogDecimation properties)
• Sensitivity analysis (SensitivityAnalysisOptions and SolverOptions

properties)
• Dimensional analysis and unit conversion (CompileOptions property)

To view the Configset object, provide the model object as an input argument to
the getconfigset method.

To edit the properties of a Configset object, use the set method.

For more information on viewing and editing the stop time and other simulation settings,
see “Simulate the Yeast Heterotrimeric G Protein Cycle” on page 4-22.

More About
• “Model Simulation” on page 4-2

4-16

 Create and Simulate a Simple Model

Create and Simulate a Simple Model

This example shows how to create and simulate a simple model of receptor-ligand
kinetics using the SimBiology Desktop.

Receptor-Ligand Kinetics

In this model, ligand L and receptor R species form receptor-ligand complexes through
reversible binding reactions. Using the mass action kinetics, the kinetic rate equation
for the rate of change in concentration of receptor-ligand complex can be defined as
dC

dt
k L R k Con off= ◊ ◊ - ◊ , where kon and koff are forward and reverse rate constants,

L, R, and C are the concentrations of ligand, receptor, and receptor-ligand complex
respectively. The objective of this simulation is to find the concentrations of all three
species (L, R, and C) as the reaction progresses given initial amounts of species and rate
constants.

Create a Model

Open the SimBiology desktop by typing simbiology in the MATLAB Command Window
or clicking SimBiology on the Apps tab.

On the Home tab, select Add Model > Create New Blank Model. Name the model as
m1 when prompted.

Select Open > Diagram to open the diagram view.

Rename the compartment to cell by double-clicking the text unnamed.

Drag and drop three species blocks and one reaction block inside the
cell compartment.

Rename the species to L , R, and C as follows.

4-17

4 Simulation and Analysis

Connect the Species and Reaction Blocks

To connect the ligand species block to the reaction block, press and hold the Ctrl key
(Windows® and Linux®) or the Option key (Macintosh®), click the L species block, and
drag the line to reaction_1. Similarly connect R to reaction_1 and reaction_1 to C.

Update the Reaction Properties and Initial Amounts of the Reactant Species

Update the reaction_1 properties to set the reaction as a reversible reaction, select
mass action as kinetic law, and define the forward and reverse rate parameters:

• Double-click the reaction_1 block to open the Reaction Properties dialog box.
• On the Settings tab, select Reversible.

4-18

 Create and Simulate a Simple Model

• From KineticLaw drop-down list, select MassAction.
• Under Quantities Used by Reaction, enter kon as the name and 2.0E6 as the

value for Forward Rate Parameter, and koff and 1E-4 for Reverse Rate
Parameter.

Update the initial amounts of reactant species by entering 5E-9 and 1E-8 as R and L
species values respectively. Click Close.

Add a Simulation Task

On the Model tab, select Add Task > Simulate model. This opens a new window
called Task Editor, where you can edit and run the task. Given the previous initial
amounts and rate parameters, the reaction reaches a saturated state after 300 seconds.
Therefore, set the simulation stop time to 300 seconds instead of 10 seconds, which is

4-19

4 Simulation and Analysis

the default stop time. To do so, expand the Task Stop Time section, select Use a Stop
Time specific to this task only, and enter 300.

Simulate the Model

To simulate the model, click the Run button.

Once the simulation is finished, the Live Plots section shows the States versus Time plot
for each species.

4-20

 Create and Simulate a Simple Model

More About• “SimBiology Desktop”

4-21

4 Simulation and Analysis

Simulate the Yeast Heterotrimeric G Protein Cycle

This example shows how to configure simulation settings, add an event to the model to
trigger a time-based change, save, and plot the simulation results. This example uses the
model described in “Model of the Yeast Heterotrimeric G Protein Cycle” on page C-17
to illustrate model simulation.

Load the gprotein.sbproj project, which includes the variable m1, a SimBiology model
object.

sbioloadproject gprotein

Set the simulation solver to ode15s and set a stop time of 500 by editing the
SolverType and StopTime properties of the configset object associated with the
m1 model.

csObj = getconfigset(m1);

csObj.SolverType = 'ode15s';

csObj.StopTime = 500;

Specify to log simulation results of all species.

csObj.RuntimeOptions.StatesToLog = 'all';

Suppose the amount of the ligand species L is 0 at the start of the simulation, but it
increases to a particular amount at time = 100. Use sbioselect to select the species
named L and set its initial amount to 0. Use addevent to set up the desired event.

speciesObj = sbioselect(m1,'Type','species','Name','L');

speciesObj.InitialAmount = 0;

evt = addevent(m1,'time >= 100','L = 6.022E17');

Simulate the model.

[t,x,names] = sbiosimulate(m1);

Simulate the simulation results. Notice that the species L amount increases when the
event is triggered at simulation time 100. Changes in other species do not show up in the
plot due to the wide range in species amounts.

plot(t,x);

legend(names)

4-22

 Simulate the Yeast Heterotrimeric G Protein Cycle

xlabel('Time');

ylabel('Amount');

To see the changes of other species, plot without the species L (the 5th species) data.

figure

plot(t,x(:,[1:4 6:8]));

legend(names{[1:4 6:8]});

xlabel('Time');

ylabel('Amount');

4-23

4 Simulation and Analysis

Alternative to storing simulation data in separate outputs, such as t, x, and names
as above, you can store them all in a single SimData object. You can then use
selectbyname to extract arrays containing the simulation data of your interest.

simdata = sbiosimulate(m1);

sbioplot(simdata);

4-24

 Simulate the Yeast Heterotrimeric G Protein Cycle

Expand Run 1 to see the names of species and parameter that are plotted.

simdata_noL = selectbyname(simdata, {'Ga','G','Gd','GaFrac','RL','R'});

sbioplot(simdata_noL);

4-25

4 Simulation and Analysis

4-26

 Sensitivity Calculation

Sensitivity Calculation

In this section...

“About Calculating Sensitivities” on page 4-27
“Model Requirements for Calculating Sensitivities” on page 4-27
“Calculate Sensitivities using sbiosimulate or SimFunctionSensitivity Object” on page
4-28
“References” on page 4-30

About Calculating Sensitivities

Calculating sensitivities lets you determine which species or parameter in a model
is most sensitive to a specific condition (for example, a drug), defined by a species or
parameter. Calculating sensitivities calculates the time-dependent sensitivities of all
the species states with respect to species initial conditions and parameter values in the
model.

Thus, if a model has a species x, and two parameters y and z, the time-dependent
sensitivities of x with respect to each parameter value are the time-dependent
derivatives

∂

∂

∂

∂

x

y

x

z
,

where, the numerator is the sensitivity output and the denominators are the sensitivity
inputs to sensitivity analysis.

For more information on the calculations performed, see “References” on page 4-30.

Model Requirements for Calculating Sensitivities

Sensitivity analysis is supported only by the ordinary differential equation (ODE)
solvers. The software calculates local sensitivities by combining the original ODE system
for a model with the auxiliary differential equations for the sensitivities. The additional
equations are derivatives of the original equations with respect to parameters. This

4-27

4 Simulation and Analysis

method is sometimes called “forward sensitivity analysis” or “direct sensitivity analysis”.
This larger system of ODEs is solved simultaneously by the solver.

SimBiology sensitivity analysis uses “complex-step approximation” to calculate
derivatives of reaction rates. This technique yields accurate results for the vast majority
of typical reaction kinetics, which involve only simple mathematical operations and
functions. When a reaction rate involves a nonanalytic function, this technique can lead
to inaccurate results. In this case, either sensitivity analysis is disabled, or sensitivity
analysis warns you that the computed sensitivities may be inaccurate. An example of
such a nonanalytic function is the MATLAB function abs. If sensitivity analysis gives
questionable results on a model whose reaction rates contain unusual functions, you may
be running into limitations of the complex-step method. Contact MathWorks Technical
Support for additional information.

Note: Models containing the following active components do not support sensitivity
analysis:

• Nonconstant compartments
• Algebraic rules
• Events

Note: You can perform sensitivity analysis on a model containing repeated assignment
rules, but only if the repeated assignment rules do not determine species or parameters
used as inputs or outputs in sensitivity analysis.

Calculate Sensitivities using sbiosimulate or SimFunctionSensitivity Object

You can calculate sensitivities using sbiosimulate or the SimFunctionSensitivity
object.

Calculate using sbiosimulate

Set the following properties of the SolverOptions property of your configset object,
before running the sbiosimulate function:

• SensitivityAnalysis — Set to true to calculate the time-dependent sensitivities
of all the species states defined by the Outputs property with respect to the initial
conditions of the species and the values of the parameters specified in Inputs.

4-28

http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html

 Sensitivity Calculation

• SensitivityAnalysisOptions — An object that holds the sensitivity analysis
options in the configuration set object. Properties of SensitivityAnalysisOptions
are:

• Outputs — Specify the species and parameters for which you want to compute
the sensitivities. This is the numerator as described in “About Calculating
Sensitivities” on page 4-27.

• Inputs — Specify the species and parameters with respect to which you want
to compute the sensitivities. Sensitivities are calculated with respect to the
InitialAmount property of the specified species. This is the denominator,
described in “About Calculating Sensitivities” on page 4-27.

• Normalization — Specify the normalization for the calculated sensitivities:

• 'None' — No normalization
• 'Half' — Normalization relative to the numerator (species output) only
• 'Full' — Full dedimensionalization

For more information about normalization, see Normalization.

After setting SolverOptions properties, calculate the sensitivities of a model by
providing the model object as an input argument to the sbiosimulate function.

The sbiosimulate function returns a SimData object containing the following
simulation data:

• Time points, state data, state names, and sensitivity data
• Metadata such as the types and names for the logged states, the configuration set

used during simulation, and the date of the simulation

A SimData object is a convenient way of keeping time data, state data, sensitivity
data, and associated metadata together. A SimData object has properties and methods
associated with it, which you can use to access and manipulate the data.

For illustrated examples, see:

• “Calculate Sensitivities” on page 4-31
• Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast

Heterotrimeric G Protein Cycle

4-29

4 Simulation and Analysis

Calculate using SimFunctionSensitivity object

Create a SimFunctionSensitivity object using the createSimFunction
specifying the 'SensitivityOutputs' and 'SensitivityInputs' name-value
pair arguments. Then execute the object. For an illustrated example, see “Calculate
Sensitivities Using SimFunctionSensitivity Object”.

References

Ingalls, B.P, and Sauro, H.M. (2003). Sensitivity analysis of stoichiometric networks:
an extension of metabolic control analysis to non-steady state trajectories. J Theor Biol.
222(1), 23–36.

Martins, J.R.R.A., Sturdza, P., and Alanso, J.J. (Jan. 2001). The connection between
the complex-step derivative approximation and algorithmic differentiation. AIAA Paper
2001–0921.

Martins, J.R.R.A., Kroo, I.M., and Alanso, J.J. (Jan. 2000). An automated method for
sensitivity analysis using complex variables. AIAA Paper 2000–0689.

4-30

 Calculate Sensitivities

Calculate Sensitivities

In this section...

“Overview” on page 4-31
“Load and Configure the Model for Sensitivity Analysis” on page 4-32
“Perform Sensitivity Analysis” on page 4-32
“Extract and Plot Sensitivity Data” on page 4-33

Overview

About the Example Model

This example uses the model described in “Model of the Yeast Heterotrimeric G Protein
Cycle” on page C-17 to illustrate SimBiology sensitivity analysis options.

This table lists the reactions used to model the G protein cycle and the corresponding
rate parameters (rate constants) for each mass action reaction. For reversible reactions,
the forward rate parameter is listed first.

No. Name Reaction1 Rate Parameters

1 Receptor-ligand interaction L + R <-> RL kRL, kRLm
2 Heterotrimeric G protein

formation
Gd + Gbg -> G kG1

3 G protein activation RL + G -> Ga + Gbg + RL kGa

4 Receptor synthesis and
degradation

R <-> null kRdo, kRs

5 Receptor-ligand degradation RL -> null kRD1

6 G protein inactivation Ga -> Gd kGd

1 Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd = inactive
G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G = inactive Gbg:Gd
complex, Ga = active G-alpha-GTP

About the Example

Assume that you are calculating the sensitivity of species Ga with respect to every
parameter in the model. Thus, you want to calculate the time-dependent derivatives

4-31

4 Simulation and Analysis

∂

∂ ()

∂ ()
∂ ()

∂ ()
∂ ()

∂ ()
∂ ()

()
, , , ...

Ga

kRLm

Ga

kRL

Ga

kG

Ga

kGa1

Load and Configure the Model for Sensitivity Analysis

1 The gprotein_norules.sbproj project contains a model that represents the wild-
type strain (stored in variable m1).

sbioloadproject gprotein_norules m1

2 The options for sensitivity analysis are in the configuration set object. Get the
configuration set object from the model.

csObj = getconfigset(m1);

3 Use the sbioselect function, which lets you query by type, to retrieve the Ga
species from the model.

Ga = sbioselect(m1,'Type','species','Where','Name','==','Ga');

4 Set the Outputs property of the SensitivityAnalysisOptions object to the Ga
species.

csObj.SensitivityAnalysisOptions.Outputs = Ga;

5 Use the sbioselect function, which lets you query by type, to retrieve all the
parameters from the model and store the vector in a variable, pif.

pif = sbioselect(m1,'Type','parameter');

6 Set the Inputs property of the SensitivityAnalysisOptions object to the pif
variable containing the parameters.

csObj.SensitivityAnalysisOptions.Inputs = pif;

7 Enable sensitivity analysis in the configuration set object (csObj) by setting the
SensitivityAnalysis option to true.

csObj.SolverOptions.SensitivityAnalysis = true;

8 Set the Normalization property of the SensitivityAnalysisOptions object to
perform 'Full' normalization.

csObj.SensitivityAnalysisOptions.Normalization = 'Full';

Perform Sensitivity Analysis

Simulate the model and return the data to a SimData object:

4-32

 Calculate Sensitivities

simDataObj = sbiosimulate(m1);

Extract and Plot Sensitivity Data

You can extract sensitivity results using the getsensmatrix method of a SimData
object. In this example, R is the sensitivity of the species Ga with respect to eight
parameters. This example shows how to compare the variation of sensitivity of Ga with
respect to various parameters, and find the parameters that affect Ga the most.

1 Extract sensitivity data in output variables T (time), R (sensitivity data for species
Ga), snames (names of the states specified for sensitivity analysis), and ifacs
(names of the input factors used for sensitivity analysis):

[T, R, snames, ifacs] = getsensmatrix(simDataObj);

2 Because R is a 3-D array with dimensions corresponding to times, output factors, and
input factors, reshape R into columns of input factors to facilitate visualization and
plotting:

R2 = squeeze(R);

3 After extracting the data and reshaping the matrix, plot the data:

figure;

plot(T,R2);

title('Normalized Sensitivity of Ga With Respect To Various Parameters');

xlabel('Time (seconds)');

ylabel('Normalized Sensitivity of Ga');

leg = legend(ifacs, 'Location', 'NorthEastOutside');

set(leg, 'Interpreter', 'none');

4-33

4 Simulation and Analysis

From the previous plot you can see that Ga is most sensitive to parameters kGd, kRs,
kRD1, and kGa. This suggests that the amounts of active G protein in the cell depends on
the rate of:

• Receptor synthesis
• Degradation of the receptor-ligand complex
• G protein activation
• G protein inactivation

4-34

 Identify Important Network Components from an Apoptosis Model Using Sensitivity Analysis

Identify Important Network Components from an Apoptosis Model
Using Sensitivity Analysis

This example shows how to identify important network components in an apoptosis
model using sensitivity analysis in the SimBiology desktop.

Apoptosis

An apoptosis is programmed cell death which is triggered by a wide variety of stimuli
or signaling events. When a cell encounters such signals, the level of Casp3* (activated
caspase3 protease) increases leading to an increased break down of proteins important
for cell survival. As a result, the cell dies. Research has shown that the level of Casp3*
is controlled by XIAP (X-linked inhibitor of apoptosis protein) that binds to Casp3* and
inactivates it so that Casp3* can no longer break down essential proteins of the cell, thus
effectively controlling the apoptosis [1], [2].

Sensitivity Analysis

Most biological networks are complex with several interactions and feedback loops, and
it might not be obvious to see which model component(s) should be controlled to have a
desired outcome such as a decrease in concentration of a particular species.

Sensitivity analysis on page 4-27 lets you determine which species or parameters in a
model are most sensitive to a specific condition, such as a drug, thus providing insights
on important targets within the model.

Using SimBiology you can calculate time-dependent sensitivities of all the species
states with respect to species initial conditions and parameter values in the model. The
objective of this simulation is to find important network components in an apoptosis
model based on a hypothesis that the apoptosis signal is directly proportional to the level
of Casp3* in the cell. This example shows how to calculate the sensitivity of species
Casp3* with respect to every species in the model as follows:

∂

∂

∂

∂

∂

∂

(*)

()
,

(*)

()
,

(*)

()
,...

Casp

Casp

Casp

Casp

Casp

XIAP

3

3

3

8

3

Load the Apoptosis Model

Open the SimBiology desktop by typing simbiology in the MATLAB Command Window
or clicking SimBiology on the Apps tab.

4-35

4 Simulation and Analysis

On the Home tab, click Open and navigate to the folder matlabroot\help\toolbox
\simbio\examples, where matlabroot is the folder where MATLAB is installed, and
open the SimBiology project file named apoptosis.sbproj.

Note: If you are using a Macintosh platform, press Command+Shift+G in the File
Browser dialog box, and enter the full path to the folder.

By default, SimBiology opens the model in the Table Overview mode, where it shows
the model’s reactions and quantity in a tabular format. The model contains nine species,
nine parameters, and six reactions. To view the model graphically, select Open >
Diagram.

Add a Sensitivity Analysis Task

On the Model tab, select Add Task > Calculate sensitivities.

Under Normalization for Computed Sensitivities, select Full (full
dedimensionalization), which specifies the data should be made dimensionless. For
more information, see Normalization.

4-36

 Identify Important Network Components from an Apoptosis Model Using Sensitivity Analysis

Specify the species for sensitivity calculations by adding all nine species under the
Sensitivities to Compute section. The fastest way to do this is to use the context menu
of the table and select Add All Species. Alternatively, you can drag and drop from
Component Palette or enter each species name manually.

Since the level of Casp3* is hypothesized to control apoptosis, select Cell.[Casp3*]
as the only output. Select the rest of the species as inputs. Multiple sensitivity inputs
and outputs can be set or cleared by selecting multiple rows and using the context menu
options. If you want to find out how sensitive Casp3* is to its initial concentration over
the course of simulation, select Cell.[Casp3*] as an input as well.

Perform Sensitivity Calculation

Click the Run button on the Task tab to perform the sensitivity analysis.

After calculation, the Live Plots section shows two figures: States vs Time figure (top)
and Sensivitity figure (bottom), which contains sensitivity values of Casp3* with respect
to all species integrated across time.

4-37

4 Simulation and Analysis

4-38

 Identify Important Network Components from an Apoptosis Model Using Sensitivity Analysis

The plot shows that Casp3* is most sensitive to XIAP concentration since XIAP has the
highest sensitivity value among all the other species. Therefore, such sensitivity analysis
indicates that XIAP could be one of the most important network components or drug
targets in this model to control the Casp3* level and subsequent apoptosis events.

References

[1] Aldridge, B.B., Haller, G., Sorger, P.K., Lauffenburger, D.A. (2006). Direct Lyapunov
exponent analysis enables parametric study of transient signalling governing cell
behaviour. Syst Biol (Stevenage) 153, 425-432.

[2] Wikipedia. (2013). XIAP, http://en.wikipedia.org/wiki/XIAP

More About
• “SimBiology Desktop”

4-39

4 Simulation and Analysis

Perform a Parameter Scan

This example shows how to perform a parameter scan by simulating a model multiple
times, each time varying the value of a parameter.

In the model described in Model of the Yeast Heterotrimeric G Protein Cycle, the rate
of G protein inactivation (kGd) is much lower in the mutant strain versus the wild-type
strain (kGd = 0.004 versus kGd = 0.11), which explains higher levels of activated
G protein (Ga) in the mutant strain. For a detailed look at how varying the level of kGd
affects the level of Ga, perform a parameter scan over five values of kGd.

Load the gprotein.sbproj project, which includes the variable m1, a model object.

sbioloadproject gprotein

The m1 model object appears in the MATLAB Workspace.

View the variants in the m1 model.

m1.Variants

SimBiology Variant - mutant (inactive)

ContentIndex: Type: Name: Property: Value:

1 parameter kGd Value 0.004

This model contains one variant named mutant that holds the content for the kGd
parameter. This variant is inactive.

Assign the variant to a variable, variantObj, so you can use it to perform the scan.

variantObj = m1.Variants(1);

Create a vector of five evenly spaced values for kGd ranging from 0.001 to 0.15.

kGdValues = linspace(1e-3,0.15,5)

kGdValues =

 0.0010 0.0382 0.0755 0.1127 0.1500

Initialize a variable, scanData, which you will later use to hold an array of SimData
objects to store the results of the parameter scan .

4-40

 Perform a Parameter Scan

scanData = [];

Loop over the five kGd values. During the loop, assign each value to the mutant variant,
and use the variant during each simulation. Store the results of the five simulations in
an array of SimData objects.

for kGd = kGdValues

 % Set the value (4th column) of the kGd variant (1st row)

 variantObj.Content{1}{4} = kGd;

 % Simulate the m1 model using the kGd variant

 simDataObj = sbiosimulate(m1,variantObj);

 % Store the results in an array of SimData objects

 scanData = [scanData;simDataObj];

end

The scanData array now contains five SimData objects, with each object containing the
data from one simulation in the parameter scan. Use sbioplot to plot the data.

sbioplot(scanData);

4-41

4 Simulation and Analysis

Uncheck All Runs , expand each Run, and select the Ga species to display only its
simulation data. This shows how varying the level of kGd affects the level of Ga.

4-42

 Perform a Parameter Scan

More About
• “Model of the Yeast Heterotrimeric G Protein Cycle” on page C-17

4-43

4 Simulation and Analysis

Nonlinear Mixed-Effects Modeling

In this section...

“What Is a Nonlinear Mixed-Effects Model?” on page 4-44
“Nonlinear Mixed-Effects Modeling Workflow” on page 4-46
“Specify a Covariate Model” on page 4-47
“Specify an Error Model” on page 4-49
“Maximum Likelihood Estimation” on page 4-49
“Obtain the Fitting Status” on page 4-50

What Is a Nonlinear Mixed-Effects Model?

A mixed-effects model is a statistical model that incorporates both fixed effects and
random effects. Fixed effects are population parameters assumed to be the same each
time data is collected, and random effects are random variables associated with each
sample (individual) from a population. Mixed-effects models work with small sample
sizes and sparse data sets, and are often used to make inferences on features underlying
profiles of repeated measurements from a group of individuals from a population of
interest.

As with all regression models, their purpose is to describe a response variable as a
function of the predictor (independent) variables. Mixed-effects models, however,
recognize correlations within sample subgroups, providing a reasonable compromise
between ignoring data groups entirely, thereby losing valuable information, and fitting
each group separately, which requires significantly more data points.

For instance, consider population pharmacokinetic data that involve the administration
of a drug to several individuals and the subsequent observation of drug concentration
for each individual, and the objective is to make a broader inference on population-wide
parameters while considering individual variations. The nonlinear function often used
for such data is an exponential function since many drugs once distributed in a patient
are eliminated in an exponential fashion. Thus the measured drug concentration of an
individual can be described as:

y
D

V

t
aij

i
ije

ki ij
=

-
+ e ,

4-44

 Nonlinear Mixed-Effects Modeling

where yij is the jth response of the ith individual, Di is the dose administered to the ith
individual, V is the population mean volume of distribution, a is an error parameter, and
e ij N~ (,)0 1 , representing some measurement error. The elimination rate parameter (ki)

depends on the clearance and volume of the central compartment k
Cl

V
i

i
= . Both ki and

Cli are for the ith patient, meaning they are patient-specific parameters.

To account for variations between individuals, assume that the clearance is a random
variable depending on individuals, varying around the population mean. For the ith
individual, Cli i= +q h

1 , where θ1 is the fixed effect (population parameter for the
clearance) and ηi is the random effect, that is, the deviation of the ith individual from the

mean clearance of the population h shi ~ N(0,)
2 .

If you have any individual-specific covariates such as weight w that linearly relate
to the clearance, you can try explaining some of the between-individual differences.
For example, if wi is the weight of the ith individual, then the model becomes
Cl wi i i= + +q q h

1 2
* , where θ2 is the fixed effect of weight on clearance.

A general nonlinear mixed-effects (NLME) model with constant variance is as follows:

y f x p

p A B

N

N

ij ij i ij

i i i i

ij

i

= +

= +

~

~

(,)

(,)

(,)

e

q h

e s

h

0

0

2

Y

yij Data vector of individual-specific response values
f General, real-valued function of pi and xij

xij Data matrix of individual-specific predictor values
pi Vector of individual-specific model parameters
θ Vector of fixed effects, modeling population parameters
ηi Vector of multivariate normally distributed individual-specific random effects
Ai Individual-specific design matrix for combining fixed effects

4-45

4 Simulation and Analysis

Bi Individual-specific design matrix for combining random effects
εij Vector of group-specific errors, assumed to be independent, identically,

normally distributed, and independent of ηi

Ψ Covariance matrix for the random effects

σ2 Error variance, assumed to be constant across observations

In addition to the constant error model, there are other error models such as
proportional, exponential, and combined error models. For details, see “Error Models” on
page 4-62.

Nonlinear Mixed-Effects Modeling Workflow

SimBiology lets you estimate fixed effects θs and random effects ηs as well as the
covariance matrix of random effects Ψ. However, you cannot alter A and B design
matrices since they are automatically determined from the covariate model you specify.
Use the sbiofitmixed function to estimate nonlinear mixed-effects parameters. These
steps show one of the workflows you can use at the command line.

1 Import data.
2 Convert the data to the groupedData format.
3 Define dosing data. For details, see “Doses” on page 2-42.
4 Create a structural model (one-, two-, or multicompartment model). For details, see

“Create Pharmacokinetic Models” on page 5-25.
5 Create a covariate model to define parameter-covariate relationships if any. For

details, see “Specify a Covariate Model” on page 4-47.
6 Map the response variable from data to the model component. For example, if you

have the measured drug concentration data for the central compartment, then map
it to the drug species in the central compartment (typically the Drug_Central
species).

7 Specify parameters to estimate using the estimatedInfo object. It lets you
optionally specify parameter transformations, initial values, and parameter bounds.
Supported transforms are log, probit, logit, and none (no transform).

8 (Optional) You can also specify an error model. The default model is the constant
error model. For instance, you can change it to the proportional error model if you
assume the measurement error is proportional to the response data. See “Specify an
Error Model” on page 4-49.

4-46

 Nonlinear Mixed-Effects Modeling

9 Estimate parameters using sbiofitmixed, which performs “Maximum Likelihood
Estimation” on page 4-49.

10 (Optional) If you have a large, complex model, the estimation might take longer.
SimBiology lets you check the status of fitting as it progresses. See “Obtain the
Fitting Status” on page 4-50.

For a complete workflow example, see “Modeling the Population Pharmacokinetics of
Phenobarbital in Neonates”.

Specify a Covariate Model

When specifying a nonlinear mixed-effects model, you define parameter-covariate
relationship using a covariate model (CovariateModel object). For example, suppose
you have PK profile data for multiple individuals and are estimating three parameters
(clearance Cl, compartment volume V, and elimination rate k) that have both fixed and
random effects. Assume the clearance Cl has a correlation with a covariate variable
weight (w) of each individual. Each parameter can be described as a linear combination
of fixed and random effects.

Cl wi i i= + +q q h
1 2 1

* ,

V
i i

= +q h
3 2 ,

ki i= +q h
4 3 ,

where θs represent fixed effects and ηs represent random effects, which are normally

distributed
h

h
h

1

2

3

0

i

i

i

MVN

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

~ (,)Y . By default, the random effects are uncorrelated. So

Y =

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

s

s

s

1

2

2

2

3

2

0 0

0 0

0 0

.

1 Construct an empty CovariateModel object.

covModel = CovariateModel;

4-47

4 Simulation and Analysis

2 Set the Expression property to define the relationships between parameters (Cl, V,
and k) and covariate (w). You must use theta as a prefix for all fixed effects and eta
for random effects.

covModel.Expression = {'Cl = theta1 + theta2*w + eta1','V = theta3 + eta2','k = theta4 + eta3'};

The FixedEffectNames property displays the fixed effects defined in the model.

covModel.FixedEffectNames

ans =

 'theta1'

 'theta3'

 'theta4'

 'theta2'

The FixedEffectDescription property displays which fixed effects correspond
to which parameter. For instance, theta1 is the fixed effect for the Cl parameter,
and theta2 is the fixed effect for the weight covariate that has a correlation with Cl
parameter, denoted as Cl/w.

covModel.FixedEffectDescription

ans =

 'Cl'

 'V'

 'k'

 'Cl/w'

3 Specify initial estimates for the fixed effects. Create a structure containing initial
estimates using the constructDefaultFixedEffectValues function.

initialEstimates = constructDefaultFixedEffectValues(covModel)

initialEstimates =

 theta1: 0

 theta2: 0

 theta3: 0

 theta4: 0

initialEstimates.theta1 = 1.20;

initialEstimates.theta2 = 0.30;

4-48

 Nonlinear Mixed-Effects Modeling

initialEstimates.theta3 = 0.90;

initialEstimates.theta4 = 0.10;

4 Set the initial estimates to the FixedEffectValues property.

covModel.FixedEffectValues = initialEstimates;

Specify a Covariance Pattern Among Random Effects

By default, sbiofitmixed assumes no covariance among random effects, that is, a
diagonal covariance matrix is used. Suppose you have η1, η2, and η3, and there is a
covariance σ12 between η1 and η2. You can indicate this using a pattern matrix where 1
indicates a variance or covariance parameter which is estimated by sbiofitmixed. For

instance, a pattern matrix
1 1 0

1 1 0

0 0 1

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

 represents
s s

s s

s

1

2

12

21 2

2

3

2

0

0

0 0

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

.

Define such a pattern using an options struct.

options.CovPattern = [1 1 0;1 1 0;0 0 1];

Then you can use options as an input argument for sbiofitmixed. For a complete
workflow, see “Nonlinear Mixed-Effects Modeling Workflow” on page 4-46.

Specify an Error Model

During the “Nonlinear Mixed-Effects Modeling Workflow” on page 4-46, you can
optionally specify an error model using a structure.

options.ErrorModel = 'proportional';

Then you can use options as one of the input arguments when you run sbiofitmixed.

Supported error models are constant (default), proportional, combined, and exponential
models. For details, see “Error Models” on page 4-62.

Maximum Likelihood Estimation

SimBiology estimates the parameters of a nonlinear mixed-effects model by maximizing a
likelihood function. The function can be described as:

4-49

4 Simulation and Analysis

p y p y p d(| , ,) (| , ,) (|)q s q h s h h2 2Y Y= Ú ,

where y is the response data, θ is the vector of fixed effects, σ2 is the error variance, Ψ
is the covariance matrix for random effects, and η is the vector of unobserved random
effects. p y(| , ,)q s

2
Y is the marginal density of y, p y(| , ,)q h s 2 is the conditional density

of y given the random effects η, and the prior distribution of η is p(|)h Y .

This integral contains a nonlinear function of the fixed effects and variance parameters
that you want to maximize. Typically for nonlinear models, the integral does not have a
closed form, and needs to be solved numerically, which involves simulating the function
at each time step of an optimization algorithm. Therefore, the estimation can take a
long time for complex models, and initial values of parameters might play an important
role for successful convergence. SimBiology provides these iterative algorithms to solve
the integral and maximize the likelihood if you have Statistics and Machine Learning
Toolbox.

• LME — Use the likelihood for the linear mixed-effects model at the current conditional
estimates of θ and η. This is the default.

• RELME — Use the restricted likelihood for the linear mixed-effects model at the
current conditional estimates of θ and η.

• FO — First-order (Laplacian) approximation without random effects.
• FOCE — First-order (Laplacian) approximation at the conditional estimates of θ.
• stochastic EM — Use the Expectation-Maximization (EM) algorithm in which the E

step is replaced by a stochastic procedure.

For a complete workflow, see “Nonlinear Mixed-Effects Modeling Workflow” on page
4-46.

Obtain the Fitting Status

During the estimation of mixed-effects parameters of a large and complex model that
may take a longer time, you may want to obtain the status of fitting as it progresses.
The sbiofitstatusplot function dynamically shows the progress of the fitting by
plotting the values of fixed effects parameters (theta) and the estimates of the variance
parameters, that is, the diagonal elements of the covariance matrix of the random effects
(Ψ), and the log-likelihood.

4-50

 Nonlinear Mixed-Effects Modeling

To obtain the status plot, you must set the OutputFcn filed of a statset option as
follows.

fitOptions.Options = statset('OutputFcn',@sbiofitstatusplot);

You can then specify fitOptions as one of input arguments when you run
sbiofitmixed. The next figure is an example of the fit status plot.

Here are some tips for interpreting the plot.

• The fitting function tries to maximize the log-likelihood. When the plot begins to
display a flat line, this might indicate that maximization is complete. Try setting the

4-51

4 Simulation and Analysis

maximum iterations to a lower number to reduce the number of iterations you need
and improve performance.

• Plots for the fixed effects (thetas) and the variance parameters (Ψs) should show
convergence. If you see oscillations, or jumps without accompanying improvements in
the log-likelihood, the model may be overparameterized. Try the following:

• Reduce the number of fixed effects.
• Reduce the number of random effects.
• Simplify the covariance matrix pattern of random effects (if you have previously

changed it from the default diagonal matrix).

For a complete workflow, see “Nonlinear Mixed-Effects Modeling Workflow” on page
4-46.

4-52

 Nonlinear Regression

Nonlinear Regression

In this section...

“What is Nonlinear Regression?” on page 4-53
“Fitting Options in SimBiology” on page 4-54
“Maximum Likelihood Estimation” on page 4-56
“Fitting Workflow for sbiofit” on page 4-58

What is Nonlinear Regression?

The purpose of regression models is to describe a response variable as a function of
independent variables. Multiple linear regression models describe the response as a
linear combination of coefficients and functions of independent variables. Nonlinearities
can be modeled using nonlinear functions of independent variables. However, the
coefficients always enter the model in a linear fashion.

Nonlinear regression models are more mechanistic models of nonlinear relationships
between the response and independent variables. The parameters can enter the model
as exponential, trigonometric, power, or any other nonlinear function. The unknown
parameters in the model are estimated by minimizing a statistical criterion such as the
negative log likelihood or the sum of squared deviations between observed and predicted
values.

In the case of pharmacokinetic (PK) studies, the response data usually represent some
measured drug concentrations, and independent variables are often dose and time. The
nonlinear function often used for such data is an exponential function since many drugs
once distributed in a patient are eliminated in an exponential fashion. One PK parameter
to estimate in this case is the rate at which the drug is eliminated from the body given
the concentration-time data.

For instance, consider drug plasma concentration data from a single individual after an
intravenous bolus dose measured at different time points with some errors. Assume the

measured drug concentration follows a monoexponential decline: C C et
t

a
k

e=
-

+
0

e .

This model describes the time course of drug concentration in the body (Ct), as a function
of the drug concentration after an intravenous bolus dose at t = 0 (C0), time (t), and
elimination rate parameter (ke). ε is the mean-zero and unit-variance variable, that is,

4-53

4 Simulation and Analysis

e ~ N(,)0 1 representing the measurement error and a is the error model parameter
(here, standard deviation).

More generically, you can write the model as y f x p gj j j= +(;) ()e , where yj is the jth
response of interest (such as Ct), f is a function of known quantities x (such as C0 and
time t), model parameters p (such as ke), and an error model g j()e .

If there are multiple observations on multiple individuals, the model becomes
y f x p gij ij j ij= +(;) ()e where yij is the jth observation of the ith individual. Additionally,

you can categorize your data into different groups based on different categories such as
sex, age, or height.

Fitting Options in SimBiology

This table summarizes nonlinear regression options available in SimBiology.

Fitting Option Example
Individual-specific parameter estimation
(Unpooled fitting)

Fit each individual separately, resulting
in one set of parameter estimates for each
individual.

4-54

 Nonlinear Regression

Category- or group-specific parameter
estimation

Fit each category or group separately,
resulting in one set of parameter estimates
for each category.

Population-wide parameter estimation
(Pooled fitting)

Fit all of the data pooled together, resulting
in just one set of parameter estimates.

In addition, SimBiology supports four kinds of error models for measured or observed
responses, namely, constant (default), proportional, combined, and exponential. For
details, see “Error Models” on page 4-62. Depending on the optimization method, you
can specify an error model for each response or all responses. For details, see “Supported
Methods for Parameter Estimation” on page 4-60.

4-55

4 Simulation and Analysis

Maximum Likelihood Estimation

SimBiology estimates parameters by the method of maximum likelihood. Rather than
directly maximizing the likelihood function, SimBiology constructs an equivalent
minimization problem. Whenever possible, the estimation is formulated as a weighted
least squares (WLS) optimization that minimizes the sum of the squares of weighted
residuals. Otherwise, the estimation is formulated as the minimization of the negative
of the logarithm of the likelihood (NLL). The WLS formulation often converges better
than the NLL formulation, and SimBiology can take advantage of specialized WLS
algorithms, such as the Levenberg-Marquardt algorithm implemented in lsqnonlin and
lsqcurvefit. SimBiology uses WLS when there is a single error model that is constant,
proportional, or exponential. SimBiology uses NLL if you have a combined error model or
a multiple-error model, that is, a model having an error model for each response.

sbiofit supports different optimization methods, and passes in the formulated WLS or
NLL expression to the optimization method that minimizes it.

 Expression that is being minimized

For the constant error model, y fi i
i

N

-()Â
2

For the proportional error model,
y f

f f

i i

i gmi

N -()
Â

2

2

For the exponential error model, ln lny fi i
i

N

-()Â
2

Weighted
Least
Squares
(WLS)

For numeric weights,
y f

w w

i i

i

N

gm i

-()
Â

2

Negative
Log-
likelihood
(NLL)

For the combined error model and multiple-error model,

i

N
i i

i i

N

i

y f
Â Â

-()
+

2

2

2

2

2

s
psln

The variables are defined as follows.

4-56

 Nonlinear Regression

N Number of experimental observations
yi The ith experimental observation

fi
Predicted value of the ith observation

s
i

Standard deviation of the ith observation.

• For the constant error model, s i
a=

• For the proportional error model, s i ib f=

• For the combined error model, s i ia b f= +

fgm

f fgm i

i

N N

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃’

1

w
i

The weight of the ith predicted value

wgm

w wgm i

i

N N

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃’

1

When you use numeric weights or the weight function, the weights are assumed to be

inversely proportional to the variance of the error, i.e., s i

i

a

w

2
2

= where a is the constant

error parameter. If you use weights, you cannot specify an error model except the
constant error model.

Various optimization methods have different requirements on the function that is
being minimized. For some methods, the estimation of model parameters is performed
independently of the estimation of the error model parameters. The following table
summarizes the error models and any separate formulas used for the estimation of error
model parameters, where a and b are error model parameters and e is the standard
mean-zero and unit-variance (Gaussian) variable.

4-57

4 Simulation and Analysis

Error
Model

Error Parameter Estimation Function

'constant':
y f aei i= + a

N
y fi i

i

N
2 21

= -()Â

'exponential':
y f aei i= exp()a

N
y fi i

i

N
2 21

= -()Â ln ln

'proportional':
y f b f ei i i= + b

N

y f

f

i i

ii

N
2

2

1=
-Ê

Ë
Á

ˆ

¯
˜Â

'combined':
y f a b f ei i i= + +()

Error parameters are included in the minimization.

Weights
a

N
y f wi i

i

N

i
2 21

= -()Â

Note: nlinfit only support single error models, not multiple-error models, that is,
response-specific error models. For a combined error model, it uses an iterative WLS
algorithm. For other error models, it uses the WLS algorithm as described previously.
For details, see nlinfit.

Fitting Workflow for sbiofit

The following steps show one of the workflows you can use at the command line to fit a
PK model.

1 Import data.
2 Convert the data to the groupedData format.
3 Define dosing data. For details, see “Doses” on page 2-42.
4 Create a structural model (one-, two-, or a multicompartment model). For details, see

“Create Pharmacokinetic Models” on page 5-25.
5 Map the response variable from data to the model component. For example, if you

have the measured drug concentration data for the central compartment, then map

4-58

 Nonlinear Regression

it to the drug species in the central compartment (typically the Drug_Central
species).

6 Specify parameters to estimate using an estimatedInfo object. Optionally, you
can specify parameter transformations, initial values, and parameter bounds.

7 Perform parameter estimation using sbiofit.

For illustrated examples, see the following.

• “Fit a One-Compartment Model to an Individual's PK Profile”
• “Fit a Two-Compartment Model to PK Profiles of Multiple Individuals”
• “Estimate Category-Specific PK Parameters for Multiple Individuals”

4-59

4 Simulation and Analysis

Supported Methods for Parameter Estimation

SimBiology supports a variety of optimization methods for least-squares and mixed-
effects estimation problems. Depending on the optimization method, you can specify
parameter bounds for estimated parameters as well as response-specific error models,
that is, an error model for each response variable. The following table summarizes the
supported optimization methods in SimBiology, fitting options, and the corresponding
toolboxes that are required in addition to MATLAB and SimBiology.

Method Additional
Toolbox
Required

Supports
Parameter
Bounds

Uses
Parameter

Sensitivities†

Response-
specific
Error
Models

Fixed or
Mixed
Effects

Supports
Stochastic
EM
Algorithm

fminsearch — No No Yes Fixed No
nlinfit Statistics

and
Machine
Learning
Toolbox

No No No Fixed No

fminunc Optimization
Toolbox

No Yes Yes Fixed No

fmincon Optimization
Toolbox

Yes Yes Yes Fixed No

lsqcurvefit Optimization
Toolbox

Yes Yes Yes Fixed No

lsqnonlin Optimization
Toolbox

Yes Yes Yes Fixed No

patternsearchGlobal
Optimization
Toolbox

Yes No Yes Fixed No

ga Global
Optimization
Toolbox

Yes No Yes Fixed No

particleswarmGlobal
Optimization
Toolbox

Yes No Yes Fixed No

4-60

 Supported Methods for Parameter Estimation

Method Additional
Toolbox
Required

Supports
Parameter
Bounds

Uses
Parameter

Sensitivities†

Response-
specific
Error
Models

Fixed or
Mixed
Effects

Supports
Stochastic
EM
Algorithm

nlmefit Statistics
and
Machine
Learning
Toolbox

No No No Mixed No

nlmefitsa Statistics
and
Machine
Learning
Toolbox

No No No Mixed Yes

† This column indicates whether the algorithm allows using parameter sensitivities to
determine gradients of the objective function.

More About
• “Nonlinear Regression”
• “Nonlinear Mixed-Effects Modeling”

4-61

4 Simulation and Analysis

Error Models

SimBiology supports the error models described in the following table. For instance, if
you assume every observation has a constant amount of noise, use the constant error
model, which is the default. Instead, if you assume the error is proportional to the
response data, then the proportional error model might be more appropriate.

Error
Model

Mathematical Representation Standard Deviation of Error Model

constant
(default)

y f a= + e a

proportionaly f b f= + e
b|f|

combinedy f a b f= + +()e a+b|f|

y f a= *exp()e or equivalently,
e e

a a
2

1- *exponential
log() log()y f a= + e a

Here, y is the response, f is the function value, ɛ is a standard mean-zero and unit-
variance (Gaussian) variable, and a and b are error parameters. For instance, if you
assume the error is approximately 5% of each observation, use the proportional error
model with b = 0.05. In SimBiology, f typically represents the simulation result.

More About
• “Nonlinear Regression”
• “Nonlinear Mixed-Effects Modeling”

4-62

 Progress Plot

Progress Plot

The progress plot provides the live feedback on the status of parameter estimation
while using sbiofit or the Fit Data task in the SimBiology desktop. When you enable
this feature, a new figure opens and shows the fitting quality measures such as log-
likelihood and first-order optimality as well as estimated parameter values for each
function iteration. The plot monitors the progress whether you are running the fit on a
local machine or in parallel using remote clusters.

When you estimate parameters, you can specify which estimation method to use during
the fitting. The progress plot is shown for all the nonlinear least-squares estimation
methods except for nlinfit. If you are using nonlinear mixed-effects methods (nlmefit
or nlmefitsa), see “Obtain the Fitting Status” on page 4-50.

The plots on the figure are displayed as a series of subplots, and there are two categories
of plots: quality measure plots and estimated parameter plots. For a pooled fit, that
is, estimating one set of parameter values for all groups (or individuals), there is only
one line for each plot and the line is faded when the fit is finished. For an unpooled fit,
that is, estimating one set of parameter values for each group (or individual), each line
represents a single individual or group. You can select one or more lines by clicking and
dragging the mouse cursor to create a rectangle on any plot. All lines that intersect the
rectangle are selected and highlighted across all plots.

Quality Measure Plots

The quality measure plots include the log-likelihood, first-order optimality, and
termination condition plots. They occupy the first row of the figure.

Log-likelihood

The estimation method tries to maximize the log-likelihood, and the plot shows the log-
likelihood value for each function iteration. When the plot begins to display a flat line, it
often indicates that maximization is complete. Try setting the maximum iterations to a
lower number to reduce the number of iterations you need and improve performance.

For a pooled fit, there is only one line in the plot and the line is faded when the fit
finishes. The log-likelihood plot shows whether the fit converges or fails along with
the information on the estimation method termination condition. The next figure is an
example of the log-likelihood plot of a pooled fit.

4-63

4 Simulation and Analysis

First-order Optimality

First-order optimality is a measure of how close a point x is to optimal, and the
plot is shown when you are using the Optimization Toolbox methods (lsqnonlin,
lsqcurvefit, fminunc, and fmincon). The first-order optimality measure must be zero
at a minimum, but a point with first-order optimality equal to zero is not necessarily a
minimum. For details, see First-order optimality.

Termination Condition

For a pooled fit, the termination condition is displayed together with the log-likelihood
plot. For details about the termination condition, refer to the exitflag output argument
description of the corresponding estimation method. Suppose that you are using the
lsqnonlin method and see a message: The fit converged with criterion
Residual. By checking the exitflag conditions of the lsqnonlin with the keyword
Residual, this termination condition corresponds to the exitflag value of 3, that is,
change in the residual was less than the specified tolerance.

For an unpooled fit, the Termination Conditions plot contains the summary
(histogram) of termination criteria for all groups (or individuals) as shown in the next
figure. The y-axis represents the total number of fits for each termination condition, and
the x-axis displays all the termination criteria.

4-64

 Progress Plot

Hybrid Functions

If you are using a hybrid function that runs after the first optimization algorithm
terminates, the plot also includes the quality measure plots for the hybrid function.
The following figure is an example where the first optimization algorithm is ga and the
hybrid function is fminunc.

4-65

4 Simulation and Analysis

Estimated Parameter Plot

This plot displays the value of the estimated parameter versus iteration for each group.
One estimated parameter plot is displayed for each parameter. The plots start on the
second row of the figure and can span multiple rows. Each plot displays a horizontal
dashed line for any lower or upper bound you specify for the estimated parameter. The
bound lines show only if the range of the plot can include the lines.

For an unpooled fit, the Progress Plot also displays a histogram that shows the
distribution of the parameter values for the completed runs. Use the toggle button over
the y-axis for each plot to switch between the log and linear scale. The next figure shows
an example of an estimated parameter plot with the bound information and distribution
of estimated values.

4-66

 Progress Plot

If you have a hierarchical model and are estimating parameters for each category such as
estimating parameters for males versus females, the Progress Plot displays one plot per
estimated parameter for each category. For example, in the next figure, the Central and
Peripheral parameters are estimated for the age categories while Q12 and Cl_Central are
estimated for the sex categories.

4-67

4 Simulation and Analysis

Status Bar

For an unpooled fit running in parallel, the Progress Plot displays a status bar in the
bottom right corner. The bar shows information about the remaining and completed
number of individuals (or groups) throughout the fit.

4-68

 Estimate Parameters of a G protein Model

Estimate Parameters of a G protein Model

In this section...

“Overview” on page 4-69
“Loading the Example Model” on page 4-70
“Defining Experimental Data” on page 4-70
“Simulating the G Protein Model” on page 4-71
“Estimating the kGd Parameter in the G Protein Model” on page 4-73
“Simulating and Plotting Results Using the Estimated Parameter” on page 4-74
“Estimating Other Parameters in the G Protein Model” on page 4-76

Overview

About the Example Model

This example illustrates parameter estimation using time-course data from one
experiment, using the sbioparamestim function. For information on all available
parameter estimation and population fitting techniques, see .

This example uses the model described in “Model of the Yeast Heterotrimeric G Protein
Cycle” on page C-17 to illustrate parameter estimation.

This table lists the reactions used to model the G protein cycle and the corresponding
rate parameters (rate constants) for each mass action reaction. For reversible reactions,
the forward rate parameter is listed first.

No. Name Reaction1 Rate Parameters

1 Receptor-ligand interaction L + R <-> RL kRL, kRLm
2 Heterotrimeric G protein

formation
Gd + Gbg -> G kG1

3 G protein activation RL + G -> Ga + Gbg + RL kGa

4 Receptor synthesis and
degradation

R <-> null kRdo, kRs

5 Receptor-ligand degradation RL -> null kRD1

6 G protein inactivation Ga -> Gd kGd

4-69

4 Simulation and Analysis

No. Name Reaction1 Rate Parameters

1 Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd = inactive
G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G = inactive Gbg:Gd
complex, Ga = active G-alpha-GTP

About the Example

The study used to build the example model (Yi et al., 2003) reported the estimated value
of parameter kGd as 0.11 for the wild-type strain. In “Calculate Sensitivities” on page
4-31, the analysis showed that Ga is sensitive to parameters kGd, kRs, kRD1, and kGa.

This example shows:

• How to estimate the parameter kGd and determine its effect on the model
• How to estimate parameters kGd, kRs, kRD1, and kGa to obtain a better fit to the

experimental data

Loading the Example Model

The gprotein.sbproj project contains a model for the wild-type strain (stored in
variable m1). Load the G protein model for the wild-type strain:

sbioloadproject gprotein

The m1 model object appears in the MATLAB Workspace.

Defining Experimental Data

The study used for this example (Yi et al., 2003) reports, in a plot, the experimental data
as the fraction of active G protein. Store the time data for the experimental results in a
variable, tExpt, and store the values for the fraction of active G protein in a variable,
GaFracExpt:

tExpt = [0 10 30 60 110 210 300 450 600]';

GaFracExpt = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';

Note: For this simple example, you stored the experimental data in a variable in the
MATLAB Workspace by typing the data values. However, typically, you import larger

4-70

 Estimate Parameters of a G protein Model

data sets into a MATLAB variable. For more information about importing data into
variables, see “Methods for Importing Data”.

Simulating the G Protein Model

1 Simulate the model and return the results to a SimData object:

simDataObj = sbiosimulate(m1);

2 Retrieve the time and state data for the GaFrac parameter:

[tOrig, GaFracOrig] = selectbyname(simDataObj,'GaFrac');

Calculating R2 for the G Protein Model

R2 is the square of the correlation between the response values and the predicted
response values. Therefore, R2 measures how successful the fit is in explaining the
variation of the data.

1 Calculate the sum of squares about the mean (SST):

sst = norm(GaFracExpt - mean(GaFracExpt))^2;

2 Interpolate the data to get time points that match the time points in the
experimental data using the pchip interpolation method:

GaFracResampled = interp1(tOrig, GaFracOrig, tExpt, 'pchip');

3 Calculate the sum of squares due to error (SSE):

sse = norm(GaFracExpt - GaFracResampled)^2;

4 Calculate the R2 value for the simulation data before parameter estimation:

rSquareOrig = 1-sse/sst

rSquareOrig =

 0.8968

For more information about the functions used here, see the norm and interp1
reference pages.

Plotting the Experimental Results and Simulation Data

1 Plot the experimental data for active G protein:

4-71

4 Simulation and Analysis

plot(tExpt, GaFracExpt, 'ro');

title('Variation of G Protein');

xlabel('Time (sec)');

ylabel('Active Fraction of G Protein');

legend('Experiment');

2 Plot the simulation data in the same plot:

hold on;

plot(tOrig, GaFracOrig);

legendText = {'Experiment', sprintf('Original R^2=%4.2f',...

 rSquareOrig)};

legend(legendText{:});

4-72

 Estimate Parameters of a G protein Model

Note: Leave this figure window open so you can use it to plot and compare results of
using the estimated parameters later in this example.

Estimating the kGd Parameter in the G Protein Model

The study used to build the G protein model reported an estimated value of 0.11 for the
parameter kGd in the wild-type strain (Yi et al., 2003). This example estimates the value
of kGd.

1 Create a variable for the parameter to estimate. Also create a variable for the
parameter corresponding to the experimental data to which you are fitting:

paramToEst = sbioselect(m1, 'Name', 'kGd');

GaFrac = sbioselect(m1, 'Name', 'GaFrac');

2 Specify plotting of each iteration of the parameter estimation to see how
optimization is progressing:

opt = optimset('PlotFcns',@optimplotfval,'MaxIter',15);

3 Use the current value of the kGd parameter in the model as the starting value for
optimization:

[estValues1, result1] = sbioparamestim(m1, tExpt, GaFracExpt, ...

 GaFrac, paramToEst, {}, {'fminsearch',opt});

4-73

4 Simulation and Analysis

Note: Close this figure before proceeding with the example.

Simulating and Plotting Results Using the Estimated Parameter

Use the estimated value of the kGd parameter to see how it affects simulation results.

1 Use a variant to store the estimated value of kGd:

estvarObj = addvariant (m1, 'Optimized kGd');

addcontent(estvarObj, {'parameter', 'kGd', 'Value', estValues1});

2 Apply the value stored in the variant, simulate the model, and return the results:

simDataObj1 = sbiosimulate(m1, estvarObj);

4-74

 Estimate Parameters of a G protein Model

[t1, GaFrac1] = selectbyname(simDataObj1,'GaFrac');

3 Calculate the R2 value with the new estimate obtained using 'fminsearch':

GaFrac1Resampled = interp1(t1, GaFrac1, tExpt, 'pchip');

sse1 = norm(GaFracExpt - GaFrac1Resampled)^2;

rSquare1 = 1 - sse1/sst

rSquare1 =

 0.9199

4 Plot the data and compare. If you left the previous figure open, because hold is on,
the new plot appears in the existing figure to facilitate the comparison:

plot(t1, GaFrac1, 'm-');

legendText{end + 1} = sprintf('kGd Changed R^2=%4.2f', rSquare1);

legend(legendText{:});

4-75

4 Simulation and Analysis

The figure shows the best fit achieved by changing the parameter kGd.

Note: Leave this figure window open, so that you can use it later in this example.

Estimating Other Parameters in the G Protein Model

The example illustrating sensitivity analysis (“Calculate Sensitivities” on page 4-31)
showed that Ga is sensitive to parameters kRs, kRD1, kGa, and kGd. Based on the results
from the sensitivity analysis, this tutorial shows you how to estimate these parameters.
The sensitivity data is presented in “Extract and Plot Sensitivity Data” on page 4-33.

4-76

 Estimate Parameters of a G protein Model

Note: Although this example estimates four parameters to fit the data, there is no
published experimental data that verifies these values, and this example is only for
illustration.

1 Create a variable containing the parameters to estimate:

paramsToEst = [sbioselect(m1, 'Name', 'kRs');...

 sbioselect(m1, 'Name', 'kRD1');...

 sbioselect(m1, 'Name', 'kGa');...

 sbioselect(m1, 'Name', 'kGd')];

2 Estimate the parameters. Use the current values of parameters in the model as the
starting values for optimization. Use the opt variable you created previously to
specify plotting of each iteration of the parameter estimation to see how optimization
is progressing:

[estValues2, result2] = sbioparamestim(m1, tExpt, GaFracExpt,...

 GaFrac, paramsToEst, {}, {'fminsearch',opt});

4-77

4 Simulation and Analysis

Note: Close this figure before proceeding with the example.

3 Compare original parameter values and the estimated parameter values obtained
with 'fminsearch':

% Original parameter values

paramsToEst

SimBiology Parameter Array

Index: Name: Value: ValueUnits:

1 kRs 4

2 kRD1 0.004

3 kGa 1e-005

4-78

 Estimate Parameters of a G protein Model

4 kGd 0.11

% Estimated parameter values

num2str(estValues2)

ans =

 4.549

 0.0031018

9.0068e-006

 0.12381

4 Calculate the R2 value using the new estimates obtained with 'fminsearch':

estvarObj2 = addvariant(m1, 'Optimized kRs, kRD1, kGa, and kGd');

addcontent(estvarObj2, ...

 {{'parameter', 'kRs', 'Value', estValues2(1)}, ...

 {'parameter', 'kRD1', 'Value', estValues2(2)}, ...

 {'parameter', 'kGa', 'Value', estValues2(3)}, ...

 {'parameter', 'kGd', 'Value', estValues2(4)}});

simDataObj2 = sbiosimulate(m1, estvarObj2);

[t2, GaFrac2] = selectbyname(simDataObj2, 'GaFrac');

GaFrac2Resampled = interp1(t2, GaFrac2, tExpt, 'pchip');

sse2 = norm(GaFracExpt - GaFrac2Resampled)^2;

rSquare2 = 1 - sse2/sst

rSquare2 =

 0.9603

5 Plot the data and compare. If you left the previous figure open, because hold is on,
the new plot appears in the existing figure to facilitate the comparison:

plot(t2, GaFrac2, 'g-');

legendText{end + 1} = sprintf('4 Constants Changed R^2=%4.2f',...

 rSquare2);

legend(legendText{:});

4-79

4 Simulation and Analysis

4-80

 Accelerating Model Simulations and Analyses

Accelerating Model Simulations and Analyses

In this section...

“What Is Acceleration?” on page 4-81
“What Simulations and Analyses Can Be Accelerated?” on page 4-81
“When to Accelerate Simulations and Analyses” on page 4-81
“Prerequisites for Accelerating Simulations and Analyses” on page 4-82
“Accelerate a Simulation or Analysis” on page 4-82
“Troubleshooting Accelerated Simulations and Analyses” on page 4-83

What Is Acceleration?

Normally, when simulating or analyzing a model in SimBiology, you express the model
in MATLAB code. You can accelerate the simulation or analysis by converting the model
to compiled C code, which executes faster. Because this compilation step has a small time
overhead, acceleration is not recommended for individual simulations of small models.
However, for large models, or for repeated simulations during analysis, acceleration can
provide a significant speed increase that outweighs the small time overhead.

What Simulations and Analyses Can Be Accelerated?

You can accelerate the following:

• Simulating models
• Calculating sensitivities

Note: For parameter estimations (using sbioparamestim) and population fittings
(using sbionlinfit, sbionlmefit, or sbionlmefitsa), acceleration is automatically
enabled, if the prerequisites for accelerating simulations and analyses are met.

When to Accelerate Simulations and Analyses

The functionality to accelerate simulations performs optimally under the following
conditions:

4-81

4 Simulation and Analysis

• Running many simulations with different initial conditions
• Running very long simulations (for example, simulations that take longer than a

minute to run)

Prerequisites for Accelerating Simulations and Analyses

To prepare your models for accelerated simulations, install and set up a compiler:

1 Install a C compiler (if one is not already installed on your system). For a
current list of supported compilers, see Supported and Compatible Compilers
atwww.mathworks.com.

2 Ensure that any user-defined functions in your model can be used for code
generation from MATLAB, so they can convert to compiled C. For more information,
see Language, Function, and Object support for C and C++ code generation (this
documentation requires MATLAB Coder™ license) or contact MathWorks Technical
Support.

Tip On 32-bit Windows platforms, the LCC compiler is automatically installed. However,
for better performance of the acceleration functionality, you may want to install a
supported compiler other than LCC, and it will be selected automatically.

On 64-bit Windows platforms, if you have not installed another compiler, SimBiology
uses the LCC64 compiler for model accelerations. If you have installed another supported
compiler, it will be selected automatically.

Accelerate a Simulation or Analysis

Accelerating simulations is a two step process:

1 Use the sbioaccelerate function to prepare your model for accelerated
simulations. Use the same input arguments that you plan to use with
sbiosimulate. For example:

sbioaccelerate(modelObj, configsetObj, doseObj);

This step prepares your model for acceleration and may take a minute or longer to
complete for very large models.

4-82

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/support/compilers/current_release/

 Accelerating Model Simulations and Analyses

Note: You need to run sbioaccelerate again, before running simulations, if you
make any modifications to this model, other than:

• Changes to any variants
• Changes to values for the InitialAmount property of species
• Changes to the Capacity property of compartments
• Changes to the Value property of parameters

2 Use the sbiosimulate function with the same input arguments that you used with
sbioaccelerate. For example:

simdataObj = sbiosimulate(modelObj, configsetObj, doseObj);

Troubleshooting Accelerated Simulations and Analyses

If you have user-defined functions, do not use persistent variables in these functions.
Persistent variables are not compatible with the functionality used for accelerating
simulations.

If you specify user-defined functions in SimBiology expressions, you might see the
following warning if your code is not compatible with code generation from MATLAB:

The SimBiology Expression and any user-defined functions

could not be accelerated. Please check that these expressions

and any user-defined functions are supported for code generation

as described in the Code Generation from MATLAB documentation.

where Expression is any of the following:

• Reaction rate/rule expression
• Repeated assignment rule expression
• Event trigger expression
• Event function expression

For more information, see Language, Function, and Object support for C and C++ code
generation (this documentation requires MATLAB Coder license) or contact MathWorks
Technical Support.

4-83

http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html

4 Simulation and Analysis

Non-compartmental Analysis

Non-compartmental analysis (NCA) lets you compute pharmacokinetic (PK) parameters
of a drug from the time course of measured drug concentrations. This approach does not
require the assumption of a specific compartmental model and often use to determine
the degree of exposure following administration of a drug, such as AUC, and other PK
parameters, such as the clearance and the terminal half-life.

Data

SimBiology lets you calculate NCA parameters from concentration–time data. The data
must contain a time column, concentration column, and a dose column that defines dose
amounts. For infusion doses, an infusion rate column is also needed. If you have grouped
data, that is, data containing multiple groups of observations, define a group column as
well.

Dosing

Single-dosing data contain a single dose amount for each individual. Multiple-dosing
data have several doses at different times for each individual. The time interval (Tau)
between doses must be constant. Select one or the other dosing type to compute NCA
parameters.

Single Dosing

SimBiology lets you compute the following NCA parameters for single-dosing data.

4-84

 Non-compartmental Analysis

Figure A shows concentration–time data in a linear scale and illustrates how the AUC
from time 0 to infinite is calculated. Figure B shows the same data in a semilogarithmic
scale. To compute the terminal rate constant (Lambda_z), SimBiology performs a set of
linear regressions of the log-transformed data using each of the last n points (n = 3, 4,
5, ...) from the terminal portion of the curve. Lambda_z is chosen from the regression
that uses the most points and has the maximum adjusted_R2.

Parameter Description

AUC_0_tz Area under the measured concentration–time curve from time = 0 to the last
time point tz.

AUC tz C t dt

tz

_ _ ()0

0

= Ú ,

where C(t) is the plasma concentration at time t.

SimBiology uses the linear trapezoidal method to calculate the AUC.
AUC Total area under the concentration–time curve extrapolating to Inf using the

terminal rate constant Lambda_z.

AUC AUC Tz
C last

Lambda z
= +_ _

_

_
0 ,

4-85

4 Simulation and Analysis

Parameter Description

where C_last is the last observed concentration and Lambda_z is the
terminal rate constant.

AUMC_0_tzArea under the first moment of the concentration–time curve from time 0 to
the last time point tz.

AUMC tz t C t dt

tz

_ _ * () *0

0

= Ú .

AUMC Total area under the first moment of the concentration–time curve
extrapolating to Inf using Lambda_z.

AUMC AUMC tz
C last

Lambda z

t C last

Lambda z

z
= + +_ _

_

_

* _

_
0

2
,

where tz is the last time point.
AUC_extrap_percentFraction of total AUC obtained from extrapolation.

AUC extrap percent
AUC AUC tz

AUC
_ _

_ _
*=

- 0
100 .

AUMC_extrap_percentFraction of total AUMC obtained from extrapolation is calculated as follows.

AUMC extrap percent
AUMC AUMC tz

AUMC
_ _

_ _
*=

- 0
100 .

Lambda_z To calculate the terminal rate constant (Lambda_z), SimBiology performs a
set of linear regressions of the log(concentration)–time data using each of the
last n points (n = 3, 4, 5, ...) from the terminal portion of the curve,

that is, points satisfying the conditions: Time T Conc C≥() £()max max& . A
minimum of 3 points is required to determine Lambda_z.

Lambda_z is chosen from the regression that uses the most points and has
the maximum adjusted_R2 among all regressions.

adjusted R
R n

n
_

()* ()2
2

1
1 1

2
= -

- -

-

4-86

 Non-compartmental Analysis

Parameter Description

CL Total drug clearance.

Cl
DM

AUC
= ,

where DM is the dose amount.
C_0 Observed concentration at time = 0.
C_min Minimum observed concentration.
C_max Maximum observed concentration.
MRT Mean residence time.

MRT
AUMC

AUC
= .

T_half Terminal half-life of the drug.

T half
Lambda z

_
ln()

_
=

2 .

T_max T_max is the time point at which the maximum concentration (C_max) is
observed.

V_ss Apparent volume of distribution (at steady state).

V ss
DM AUMC

AUC

_
*

=

2
.

V_z Volume of distribution during the terminal phase.

V z
DM

AUC Lambda z
_

* _
= .

DM Dose amount.

Multiple Dosing at Steady State

Given multiple doses at a regular interval, there is an ongoing process of drug absorption
and removal from a body. A steady state is reached when the amount of drug going into

4-87

4 Simulation and Analysis

the body is the same as the amount of drug being eliminated. SimBiology computes the
following parameters for multiple-dosing data at steady state.

Parameter Description

AUC_Tau Area under the concentration–time curve during a dosing interval at steady
state.

AUC Tau C t dt

t

t Tau

_ ()=
+

Ú .

Tau Dosing interval.

4-88

 Non-compartmental Analysis

Parameter Description

CL Total drug clearance.

Cl
DM

AUC
= ,

where DM is the dose amount.
MRT Mean residence time.

MRT
AUMC

AUC
= .

T_max T_max is the time point at which the maximum concentration (C_max) is
observed.

V_ss Apparent volume of distribution at steady state.

V ss
DM AUMC

AUC

_
*

=

2
.

V_z Volume of distribution during the terminal phase.

V z
DM

AUC Lambda z
_

* _
= .

C_Avg Average concentration at steady state.

C Avg
AUC Tau

Tau
_

_

= .

C_max_SS Maximum observed concentration during a dosing interval at steady state.
C_min_SS Minimum observed concentration during a dosing interval at steady state.
DM Dose amount.
PTF_percentPeak trough fluctuation over one dosing interval at steady state.

PTF Percent
C SS C SS

C Avg
_

_ max_ _ min_

_
*=

-

100 .

4-89

4 Simulation and Analysis

Parameter Description

Accumulation_IndexTheoretical accumulation ratio.

Accumulation Index

e
Lambda z Tau

_
_ *

=

-
-

1

1
.

T_max_SS Time to reach the maximum observed concentration at steady state.
T_min Time at which the minimum concentration is reached in a dosing interval.

Sparse Sampling

To calculate PK parameters, measured concentrations at multiple time points for each
individual is needed after the drug administration. Under certain circumstances, it is
not feasible or not practical to obtain such longitudinal data on a single subject. In such
cases, concentration data is collected from multiple individuals at each time point and
then averaged to calculate NCA parameters for each group instead. SimBiology performs
such sparse sampling by taking the average of the dependent variable for all individuals
at the same time point. It then returns the values of NCA parameters for each group.

Calculating NCA Parameters

You can calculate NCA parameters in the SimBiology desktop. After you import the data,
select Open > NCA on the Define Plot tab. Specify the type of data (Single Dosing
or Multiple Dosing at Steady State) and type of dose (IV Bolus, IV Infusion,
or ExtraVascular). For multiple dosing data, define the Dosing interval (Tau) as
well. Lower limit of quantization (LOQ) is a threshold below which the values of
dependent variable are truncated to zero.

To export the calculated statistics, select Export Statistics from the context menu of the
NCA table. By default, the data is exported as a table. To convert it to a dataset, use
table2dataset.

More About
• “SimBiology Desktop”
• “Import Data from a NONMEM-Formatted File Using the SimBiology Desktop” on

page 5-16

4-90

5

Pharmacokinetic Modeling

• “Pharmacokinetic Modeling Functionality” on page 5-2
• “Importing Data — Supported Files and Data Types” on page 5-7
• “Importing Data” on page 5-13
• “Import Data from a NONMEM-Formatted File Using the SimBiology Desktop” on

page 5-16
• “Create Pharmacokinetic Models” on page 5-25
• “About Data Fitting in PKPD Models” on page 5-36
• “Perform Data Fitting with PKPD Models” on page 5-41

5 Pharmacokinetic Modeling

Pharmacokinetic Modeling Functionality
In this section...

“Overview” on page 5-2
“Required and Recommended Software for Pharmacokinetic Modeling” on page 5-2
“How SimBiology Supports Pharmacokinetic Modeling” on page 5-3
“Using the Command Line Versus the SimBiology Desktop” on page 5-5
“Pharmacokinetic Modeling Example” on page 5-5
“Acknowledgements: Tobramycin Data Set” on page 5-5

Overview

SimBiology software extends the MATLAB computing environment for analyzing
pharmacokinetic (PK) data using models. The software lets you do the following:

• Create models — Use a model construction wizard. Alternatively, extend any model
with pharmacodynamic (PD) model components, or build higher fidelity models. See
“Model” on page 5-3 for more information.

• Fit data — Fit nonlinear, mixed-effects models to data, and estimate the fixed and
random effects, or fit the data using nonlinear least squares. For more information,
see “Analyze Data Using Models” on page 5-4.

• Generate diagnostic plots — For more information, see “Analyze Data Using Models”
on page 5-4.

The software lets you work with different model structures, thus letting you try multiple
models to see which one produces the best results.

Required and Recommended Software for Pharmacokinetic Modeling

Required Software

MATLAB Provides a command-line interface and an integrated software
environment. For instructions, see the MATLAB installation
documentation for your platform.

If you have installed MATLAB and want to check which other
MathWorks® products are installed, enter ver in the MATLAB
Command Window.

5-2

 Pharmacokinetic Modeling Functionality

Statistics and
Machine Learning
Toolbox (Version 7.3
(R2010a) or greater)

Provides fitting tools including functions used to analyze
nonlinear mixed effects.

Recommended Software

C Compiler Required to prepare the model for accelerating
simulations. For list of supported compilers, see
Supported and Compatible Compilers.

Optimization
Toolbox

Optimization Toolbox extends the MATLAB technical
computing environment with tools and widely used algorithms
for standard and large-scale optimization. These algorithms
solve constrained and unconstrained, continuous and discrete
problems. If the Optimization Toolbox product is installed, you
can specify additional methods for likelihood maximization. If
you do not have this product, SimBiology uses fminsearch
provided by MATLAB for likelihood maximization.

How SimBiology Supports Pharmacokinetic Modeling

Import and Work with Data

You can import tabular data into the SimBiology desktop or the MATLAB Workspace.
The supported file types are .xls, .csv, and .txt. You can specify that the data is in
a NONMEM formatted file. The import process interprets the columns according to the
NONMEM definitions.

From the SimBiology desktop, you can filter the raw data to suppress outliers, visualize
data using common plots (such as plot, semilog, scatter, or stairs), and perform
basic statistical analysis. You also can use functions to process and visualize the data at
the command line.

Model

SimBiology provides an extensible modeling environment. You can do any of the
following:

• Create a PK model using a model construction wizard to specify the number of
compartments, the route of administration, and the type of elimination.

5-3

http://www.mathworks.com/support/compilers/current_release/

5 Pharmacokinetic Modeling

• Extend any model with pharmacodynamic (PD) model components, or build higher
fidelity models.

• Build or load your own SimBiology, or SBML model.

For more information on building SimBiology models, see “What is a Model?” on page 2-2.

Analyze Data Using Models

Perform both individual and population fits to grouped longitudinal data:

• Individual fit — Fit data using nonlinear least-squares method, specify parameter
transformations, estimate parameters, and calculate residuals and the estimated
coefficient covariance matrix.

• Population fit — Fit data, specify parameter transformations, and estimate the fixed
effects and the random sources of variation on parameters using nonlinear mixed-
effects models.

You can use the following methods to estimate the fixed effects:

• LME — Linear mixed-effects approximation
• RELME — Restricted LME approximation
• FO — First-order estimate
• FOCE — First-order conditional estimate

For more information about each of these methods, see nlmefit in the Statistics and
Machine Learning Toolbox documentation.

• Population fit using a stochastic algorithm — Fit data, specify parameter
transformations, and estimate the fixed effects and the random sources of variation
on parameters, using the Stochastic Approximation Expectation-Maximization
(SAEM) algorithm. SAEM is more robust with respect to starting values. This
functionality relaxes assumption of constant error variance.

For more information, see nlmefitsa in the Statistics and Machine Learning Toolbox
documentation.

In addition, you can generate diagnostic plots that show:

• The predicted time courses and observations for an individual or the population
• Observed versus predicted values
• Residuals versus time, group, or predictions

5-4

 Pharmacokinetic Modeling Functionality

• Distribution of the residuals
• A box-plot for random effects or parameter estimates from individual fitting

Using the Command Line Versus the SimBiology Desktop

SimBiology extends MATLAB and lets you access pharmacokinetic modeling
functionality at the command line and in the graphical SimBiology desktop.

Use the command line to write and save scripts for batch processing and to automate
your workflow.

Use the SimBiology desktop to interactively change and iterate through the model
workflow. The SimBiology desktop lets you encapsulate models, data, tasks, task
settings, and diagnostic plots into one convenient package, namely a SimBiology project.

Furthermore, if you are using the SimBiology desktop and want to learn about using
the command line, the MATLAB code capture feature in the desktop lets you see the
commands and export files for further scripting in the MATLAB editor.

Pharmacokinetic Modeling Example

For an example showing pharmacokinetic modeling functionality at the command line,
see Modeling the Population Pharmacokinetics of Phenobarbital in Neonates.

Acknowledgements: Tobramycin Data Set

Acknowledgements for data in the tobramycin.txt file in the /matlab/toolbox/
simbio/simbiodemos folder:

References

[1] Original Publication: Aarons L, Vozeh S, Wenk M, Weiss P, and Follath F.
“Population pharmacokinetics of tobramycin.” Br J Clin Pharmacol. 1989
Sep;28(3):305–14.

Data set provided by Dr. Leon Aarons, (laarons@fs1.pa.man.ac.uk)

The data in the tobramycin.txt file were downloaded from the Web site of the
Resource Facility for Population Kinetics http://depts.washington.edu/rfpk/

5-5

5 Pharmacokinetic Modeling

service/datasets/index.html (no longer active). Funding source: NIH/NIBIB grant
P41-EB01975.

The original data set was modified as follows:

• Header comments were removed.
• The file was converted to a tab-delimited format.
• Missing values in the HT column were denoted with "." instead of 100000000.000.

5-6

 Importing Data — Supported Files and Data Types

Importing Data — Supported Files and Data Types

In this section...

“Supported Files and Data Types” on page 5-7
“Support for Importing NONMEM Formatted Files” on page 5-7
“Creating a Data File with SimBiology Definitions” on page 5-12

Supported Files and Data Types

You can import tabular data to the SimBiology desktop or to the MATLAB Workspace.
The supported file types are Excel files (.xls, .xlsx), text files (.csv, .txt), and SAS XPORT
files (.xpt). You can also specify that the data is in a NONMEM formatted file. The
import process interprets the columns according to the NONMEM definitions. For more
information see “Support for Importing NONMEM Formatted Files” on page 5-7.

From the SimBiology desktop, you can filter the raw data to suppress outliers, visualize
data using common plots (such as plot, semilog, scatter, or stairs), and perform
basic statistical analysis. You also can use functions to process and visualize the data at
the command line.

Note: If your data set contains dosing information that is infusion data, the data set
must contain the rate and not an infusion duration.

Unit Conversion

Regardless of whether unit conversion functionality is on or off, dosing in the data file
must be expressed in amounts (or as amount/time for infusion rate). By default Unit
Conversion is off, so you must ensure that units for the data are consistent with each
other. If you want to turn on unit conversion, see “Unit Conversion for Imported Data” on
page 5-34 .

Support for Importing NONMEM Formatted Files

You can specify that the data is in a NONMEM formatted file. The following table
highlights the interpretation of this data in SimBiology software.

5-7

5 Pharmacokinetic Modeling

Column Header Interpretation

ID Text (character vector), numeric, or categorical values that
identify the record or group. The import process assumes
that contiguous data with the same value contains data
from one individual. If the data contains non-contiguous
references to the same value, the import process assigns
the second ID encountered an indexed valued derived
from the group first encountered. For example, if the
ID columns contains [1 1 1 2 2 2 1 1 1], the IDs
assigned are 1, 2, 1_1.

TIME Monotonically increasing positive values within each
group, indicating time of observation or dose or text
(character vector). The data file can specify clock (2:30 as
a character vector) or decimal values (6.25). The import
process assigns a value of 0 to the first TIME value in the
data file. The import process assigns subsequent values
relative to the first value.

The following table is an example of how the import
process interprets the clock values as decimal values.

Original Clock Values Imported Values

10:00 0
10:30 0.5
11 1
12:30 2.5

If the data file also contains a DATE column, the import
process uses it with the TIME column in calculating the
relative TIME values. The column cannot contain Inf.

5-8

 Importing Data — Supported Files and Data Types

Column Header Interpretation

DATE, DAT1, DAT2, or DAT3 Defines the day of the observation or the dose. The column
can contain the month as a number (9) or a character
vector (Sep). Specify date in the following formats:

• DATE — The column can specify month/day/year or
month-day-year. If you specify two numbers, the
import process assumes they are month and day. You
can use either / or - as a separator.

• DAT1 — The column can specify day/month/year or
day-month-year. If you specify two numbers, the
import process assumes they are day and month.

• DAT2 — The column can specify year/month/day or
year-month-day. If you specify two numbers, the
import process assumes they are month and day.

• DAT3 — The column can specify year/day/month or
year-day-month. If you specify two numbers, the
import process assumes they are day and month.

Note:

• If you specify only one number, the import process
assumes it is the day.

• You can omit the year or specify 1, 2, 3, or 4 digits. If
you specify two-digit years, it is assumed to be in the
1900s.

• If the data has the DAT1, DAT2, or DAT3 column,
set the DateLabel property of a NMFileDef object
accordingly using sbionmfiledef. Then specify the
object as the second input argument when you run
sbionmimport.

DV Numeric value of an observation. Column cannot contain
Inf or –Inf.

5-9

5 Pharmacokinetic Modeling

Column Header Interpretation

MDV Defines whether a row describes an observation:

• Row contains 0 — Observation event
• Row contains 1 — Not an observation event

EVID Defines the type of event described for the row in the
record:

• 0 — Observation event; row contains an observed
value.

• 1 — Dose event; row describes a dose.
• 2 — Other event; row describes some other event such

as measurement of a covariate.

If a column contains values for dose, but EVID is not 1, the
import process ignores the value. You see a warning and
the value is ignored.

If EVID is set to 2, then only those specified row data are
imported as covariate data. However, if you have an EVID
column as well as one or more covariate columns, but do
not specify a value of 2 anywhere in the EVID column,
then SimBiology imports all the row data as covariate
values.

The import process does not support values 3 and 4. You
see a warning and the value is ignored.

5-10

 Importing Data — Supported Files and Data Types

Column Header Interpretation

CMT Indicates which compartment is used for observation value
or for dose received. The interpretation also depends on
EVID:

• Observation event (EVID = 0) — CMT column
indicates which compartment was used for observation
value.

• Dose Event (EVID = 1) — CMT column indicates which
compartment received the dose.

Note: SimBiology numbers compartments starting with
1, while NONMEM numbers them starting with 0. For
instance, if a NONMEM data file contains doses and
measurements for CMT = 0, SimBiology generates data
columns named Dose1 and Response1 respectively.

AMT Positive number indicating dose. 0 or NaN specifies no dose
administered. The column cannot contain Inf.

RATE Positive number indicating rate of infusion. 0 specifies an
infinite rate (equivalent to a bolus dose), and NaN specifies
no rate. The column cannot contain Inf.

II Positive number defining the time between doses.
ADDL When the data specifies a number of identical serial doses

at specific intervals (defined by II), ADDL specifies the
number of doses in the series excluding the initial dose.
If the data specifies II but not ADDL, then SimBiology
assumes that the dosing occurs for the duration of that
data record.

Unsupported NONMEM Definitions

The import process does not support (and therefore ignores) the rows containing the
following values or definitions:

• EVID values 3 and 4
• SS column for specifying steady state doses
• PCMT column to define whether to compute a prediction for the row

5-11

5 Pharmacokinetic Modeling

• CALL column for calling the ERROR or the PK subroutine
• If rate is specified as being less than zero, it is assumed to be zero

Creating a Data File with SimBiology Definitions

If you are creating a file containing population data that you want to later import into
SimBiology, create the data file with the following columns:

• Group column — Specify text, numeric, or categorical values. The rows in the file that
have the same Group column value are for the same individual.

• Time column — Specify monotonically increasing positive values within each group
that define the time of the dose, observation and/or covariate measurements.

• Zero or more dosing columns — Create one dosing column for each compartment
being dosed. In each column, specify positive values representing doses in amount
that are added to a species. Use 0 or NaN to specify that no dose was applied at the
specified time. This is useful for times when an observation was recorded but no dose
was applied.

• Zero, or more rate columns — Specify positive values. Zero specifies an infinite rate
and NaN specifies that no rate applies. The rate column is associated with a dosing
column and defines the rate at which the dose is administered.

• Zero or more observation columns — Specify numeric values or NaNs. You can only
specify one observation value at a particular time for each group. NaN values define
that no observation was recorded at the specified time. This is useful for times when a
dose was applied but no observation was recorded.

• Zero or more covariate columns — Specify numeric values or NaNs. Each value
defines the covariate value at the specified time. NaN values define that no covariate
observation was recorded at the specified time.

If you set an EVID value of 2 for some rows, then SimBiology imports only those rows
as covariate data. If you do not mention an EVID value of 2 anywhere and have one or
more covariate columns, then SimBiology imports all the row data as covariate data.

5-12

 Importing Data

Importing Data

In this section...

“Import Data from Files” on page 5-13
“Importing Data from NONMEM-Formatted Files” on page 5-14
“Other Resources for Importing Data” on page 5-15

Import Data from Files

Use the dataset function to import tabular data with named columns into an array
that you can use in fitting and analysis at the command line. Use this function when
you want to import the data without NONMEM interpretation of column headers. The
dataset function lets you specify parameter/value pair arguments in which you can
specify options such as the type of delimiter, and whether the first row contains header
names. For more information, see dataset.

To prepare the data file for import, remove any comments that are present at the
beginning of the file.

Examples:

% text files

data = dataset('file', 'tobramycin.txt')

% text files with . in place of missing values

data = dataset('file', 'tobramycin.txt', 'TreatAsEmpty', '.')

% For Excel files

data = dataset('xlsfile', 'tobramycin.xls')

You can also construct the dataset array from variables in the MATLAB Workspace.

% Create a 10x2 array

x = rand(10,2);

% Construct a dataset array containing x

data = dataset({x(:, 1), 'Column1'}, {x(:,2), 'Column2'})

If you import the data as separate variables containing doubles, you can construct the
dataset array by concatenating the variables.

% Create 2 10x1 vectors

5-13

5 Pharmacokinetic Modeling

x = rand(10,1);

y = rand(10,1);

% Construct a dataset array containing x and y

data = dataset({x, 'Column1'}, {y, 'Column2'})

After you finish analyzing your data, you can export any new variables in the MATLAB
Workspace to a variety of file formats.

Importing Data from NONMEM-Formatted Files

Use the sbionmimport function to import data from NONMEM formatted files. To
import the data without NONMEM interpretation of column headers, see “Import Data
from Files” on page 5-13.

To prepare the data file for import, remove any comments that are present at the
beginning of the file and select one of the following methods to import your data:

• If the data file contains only the column header values shown in “Support for
Importing NONMEM Formatted Files” on page 5-7, use the syntax shown in the
following example:

filename = 'C:\work\datafiles\dose.xls';

ds = sbionmimport(filename);

• If the data file has column header labels different from the table shown in “Support
for Importing NONMEM Formatted Files” on page 5-7 and you want to apply
NONMEM interpretation of headers:

1 Create a NONMEM file definition object. This object lets you define what the
column headers in the data file mean in SimBiology. In the following example,
the column containing response values is CP, whereas in NONMEM formatted
files the column is labelled DV.

To use the tobramycin data set [1], create a NONMEM file definition object and
define the following:

def = sbionmfiledef;

def.DoseLabel = 'DOSE';

def.GroupLabel = 'ID';

def.TimeLabel = 'TIME';

def.DependentVariableLabel = 'CP';

def.MissingDependentVariableLabel = 'MDV';

def.EventIDLabel = 'EVID';

def.ContinuousCovariateLabels = {'WT', 'HT', 'AGE', 'SEX', 'CLCR'};

5-14

 Importing Data

Your file can contain any name for column headings. See sbionmfiledef for the
list of properties you can configure in the NONMEM file definition object.

2 Use the sbionmimport function to import your data file with the column header
definitions as specified in the NONMEM file definition object. For example,
browse to matlabroot/toolbox/simbio/simbiodemos/ (where matlabroot
is the folder where MATLAB is installed).

[data, pkDataObject] = sbionmimport('tobramycin.txt', def, ...

 'TreatAsEmpty', '.');

This example shows you how to obtain the PKData object, PKDataObj, while
importing, since you will use the PKData object in fitting the model later.

The sbionmimport function accepts property-name-value pairs accepted by
dataset. For example, if the data set does not contain column headers, use
'ReadVarNames', false to specify that sbionmimport should read values
from the first row of the file.

For information about creating a model to fit the data, see “Create a Pharmacokinetic
Model Using the Command Line” on page 5-27.

Other Resources for Importing Data

For detailed information about supported data formats and the functions for importing
data into the MATLAB Workspace, see the “Methods for Importing Data”.

You also can import data using the MATLAB Import Wizard (see “Import Images, Audio,
and Video Interactively”. Use the Import Wizard, to import data as text files (such as
.txt and .dat), MAT-files, and spreadsheet files, (such as .xls).

The MATLAB Import Wizard processes the data source. The wizard recognizes
data delimiters, as well as row or column headers, to facilitate the process of data
selection and importation into the MATLAB Workspace. You can import the data to the
SimBiology desktop from the MATLAB Workspace.

5-15

5 Pharmacokinetic Modeling

Import Data from a NONMEM-Formatted File Using the
SimBiology Desktop

This example shows how to import data from a NONMEM-formatted file. The data can
be in any of the following supported file formats: .xlsx, .xls, .csv, and .txt. Note: Before
importing any NONMEM formatted data from a file, remove any comments that are
present at the beginning of the file.

Load Sample Data

Open the SimBiology desktop by typing simbiology in the MATLAB Command Window
or clicking SimBiology on the Apps tab.

On the Home tab, select Add Data > Load Data from File.

Navigate to the folder matlabroot\help\toolbox\simbio\examples, where
matlabroot is the folder where MATLAB is installed, and open a sample NONMEM-
formatted file named nonmem_bolus_dosing.txt. This file contains synthetically
generated data for 20 individuals who received bolus doses every 8 hours for 5 times, and
drug plasma concentrations were recorded every half hour for 60 hours.

Note: If you are using a Macintosh platform, press Command+Shift+G in the File
Browser dialog box, and enter the full path to the folder.

Configure NONMEM Data Settings

From the Text File Import dialog box, select Tab as Column Separator, and select
Use NONMEM interpretation of headers.

The CID column heading corresponds to groups of patients. Select group to identify it as
a group column, and click Update Preview.

5-16

 Import Data from a NONMEM-Formatted File Using the SimBiology Desktop

Note: The import dialog maps NONMEM column headings to appropriate data
classification categories for SimBiology to interpret the data. If there is any ambiguity, a
warning message is shown at the bottom of the window.

5-17

5 Pharmacokinetic Modeling

Click OK to load the data, and SimBiology generates a scatter plot of time versus
response for all individuals as shown next.

5-18

 Import Data from a NONMEM-Formatted File Using the SimBiology Desktop

View Raw Data

Click the Raw Data tab at the bottom of the plot to see a tabular format of the data.
Notice that SimBiology has generated an updated Dose column and a Response
column, which is the CONC column of the original NONMEM data. You can assign
appropriate units using the drop-down list under each column.

Define Plot Settings

Instead of having shown in one axes for all patients, you can have separate axes for
each individual. Go back to the Figure 1 tab. On the Define Plot tab, in the Grouping
section, select separate axes instead of one axes. SimBiology then generates separate
axes for all individuals.

5-19

5 Pharmacokinetic Modeling

Non-compartmental Analysis (NCA) Parameters

SimBiology lets you calculate NCA parameters from concentration-time data, including
AUC, clearance, and terminal half life. For details, see NCA on page 4-84.

5-20

 Import Data from a NONMEM-Formatted File Using the SimBiology Desktop

To view NCA parameters, select Open > NCA. Since the imported data contains
multiple doses, change the Type of data to Multiple Dosing at Steady State
(Concentrations in plasma), and enter 8.0 for Dosing interval (Tau).

The Table of NCA Parameters is then updated. In order to see the description of each
parameter and select which parameter to include in the calculation, right-click anywhere
on the table, and select NCA Parameters to Calculate.

You can also export the parameters as a dataset or separate variables to the MATLAB
Workspace using the Export Statistics option.

Filter Data

You can filter the data and select which data to plot by defining data exclusion rules. On
the Explore Data tab, click Edit Exclusions. To exclusively view the response data of
the first six individuals for day 1 and day 2, add two exclusions: ID > (6), and Time >
(48). Select Exclude Row(s) for each expression as shown next.

5-21

5 Pharmacokinetic Modeling

Go back to the Figure 1 tab, and it now shows only the first six individual data for the
first two days.

5-22

 Import Data from a NONMEM-Formatted File Using the SimBiology Desktop

If necessary, you can add additional data exclusion expressions and share them via
Share Edits icon on the Explore Data tab.

More About
• “Support for Importing NONMEM Formatted Files” on page 5-7

5-23

5 Pharmacokinetic Modeling

• “Non-compartmental Analysis” on page 4-84

5-24

 Create Pharmacokinetic Models

Create Pharmacokinetic Models

In this section...

“Ways to Create or Import Pharmacokinetic Model” on page 5-25
“How SimBiology Models Represent Pharmacokinetic Models” on page 5-25
“Create a Pharmacokinetic Model Using the Command Line” on page 5-27
“Dosing Types” on page 5-29
“Elimination Types” on page 5-31
“Intercompartmental Clearance” on page 5-33
“Unit Conversion for Imported Data” on page 5-34

Ways to Create or Import Pharmacokinetic Model

To start modeling, you can:

• Create a PK model using a model construction wizard that lets you specify the
number of compartments, the route of administration, and the type of elimination.

• Extend any model to build higher fidelity models.
• Build or load your own model. Load a SimBiology project or SBML model.

How SimBiology Models Represent Pharmacokinetic Models

The following figure compares a model as typically represented in pharmacokinetics with
the same model shown in the SimBiology model diagram. For this comparison, assume
that you are modeling administration of a drug using a two-compartment model with
any dosing input and linear elimination kinetics. (The model structure remains the same
with any dosing type.)

5-25

5 Pharmacokinetic Modeling

Note the following:

• SimBiology represents the concentration or amount of a drug in a given compartment
or volume by a species object contained within the compartment.

• SimBiology represents the exchange or flow of the drug between compartments and
the elimination of the drug by reactions.

• SimBiology represents intercompartmental clearance by a parameter (Q) which
specifies the clearance between the compartments.

• SimBiology drives the dosing schedule with a combination of species (Drug and/or
Dose) and reactions (Dose -> Drug), depending on whether the administration into
the compartment follows bolus, zero-order, infusion, or first-order dosing kinetics. For
more information on the components added and parameters estimated, see “Dosing
Types” on page 5-29.

You can also view this model as a regression function, y = f(k,u), where y is the
predicted value, given values of an input u, and parameter values k. In SimBiology the
model represents f, and the model is used to generate a regression function if y, k, and u
are identified in the model.

5-26

 Create Pharmacokinetic Models

Create a Pharmacokinetic Model Using the Command Line

To create a PK model with the specified number of compartments, dosing type, and
method of elimination:

1 Create a PKModelDesign object. The PKModelDesign object lets you specify the
number of compartments, route of administration, and method of elimination, which
SimBiology uses to construct the model object with the necessary compartments,
species, reactions, and rules.

pkm = PKModelDesign;

2 Add a compartment specifying the compartment name, and optionally, the type of
dosing, and the method of elimination. Also specify whether the data contains a
response variable measured in this compartment and whether the dose(s) have time
lags. For example, if using the tobramycin data set [1], specify a compartment named
Central, with Bolus for the DosingType property, linear-clearance for the
EliminationType property, and true for the HasResponseVariable property.

pkc1 = addCompartment(pkm, 'Central', 'DosingType', 'Bolus', ...

 'EliminationType', 'linear-clearance', ...

 'HasResponseVariable', true);

For a description of other DosingType and EliminationType property values, see
“Dosing Types” on page 5-29 and “Elimination Types” on page 5-31.

For a description of the HasResponseVariable property, see
HasResponseVariable. At least one compartment in a model must have a
response. Although SimBiology supports multiple responses per compartment, when
adding compartments to a PKModelDesign object, you are limited to one response
per compartment.

Note: To add a compartment that has a time lag associated with any dose that
targets it, set the HasLag property to true:

pkc_lag = addCompartment(pkm, 'Central', 'DosingType', 'Bolus', ...

 'EliminationType', 'linear-clearance', ...

 'HasResponseVariable', true, 'HasLag', true);

Or after adding a compartment, set its HasLag property to true:

pkc1.HasLag = true;

5-27

5 Pharmacokinetic Modeling

3 Optionally, add a second compartment named Peripheral, with no dosing,
no elimination, and no time lag. Set the HasResponseVariable property to
true. If you are using the tobramycin data set [1], skip this step and use only one
compartment.

pkc2 = addCompartment(pkm, 'Peripheral', 'HasResponseVariable', true);

The model construction process adds the necessary parameters, including a
parameter representing intercompartmental clearance Q. You can add more
compartments by repeating this step. The addition of each compartment creates a
chain of compartments in the order of compartment addition, with a bidirectional
flow of the drug between compartments in the model.

Use the handle to the compartment (pkc1 or pkc2), to change compartment
properties.

4 Construct a SimBiology model object.

[modelObj, PKModelMapObj] = pkm.construct

The construct method returns a SimBiology model object (modelObj) and a
PKModelMap object (PKModelMapObj) that contains the mapping of the model
components to the elements of the regression function. For more information about
the PKModelMap object, see “Defining Model Components for Observed Response,
Dose, Dosing Type, and Estimated Parameters” on page 5-37.

Note: If you change the PKModelDesign object, you must create a new model object
using the construct method. Changes to the PKModelDesign do not automatically
propagate to a previously constructed model object.

5 Perform parameter fitting as shown in “Perform Data Fitting with PKPD Models” on
page 5-41.

The model object and the PKModelMap object are input arguments for the sbionlmefit,
sbionlmefitsa and sbionlinfit functions used in parameter fitting.

For information on ... See ...

Dosing types “Dosing Types” on page 5-29
Elimination types “Elimination Types” on page 5-31
Parameter fitting “Perform Data Fitting with PKPD Models” on page

5-41

5-28

 Create Pharmacokinetic Models

For information on ... See ...

Simulating the model and a
description of configuration sets

“Model Simulation” on page 4-2

Dosing Types

When creating models, SimBiology creates the following model components for each
compartment in the model, regardless of the dosing type:

• Two species (Drug_CompartmentName and Dose_CompartmentName) for each
compartment.

• A reaction (Dose_CompartmentName -> Drug_CompartmentName) for each
compartment, governed by mass action kinetics.

• A parameter (ka_CompartmentName) for each compartment, representing
the absorption rate of the drug when absorption follows first-order kinetics.
This is the forward rate parameter for the Dose_CompartmentName ->
Drug_CompartmentName reaction.

• A parameter (Tk0_CompartmentName) for each compartment, representing the
duration of drug absorption when absorption follows zero-order kinetics.

• A parameter (TLag_CompartmentName) for each compartment, representing the time
lag for any dose that targets that compartment and also that is specified as having a
time lag.

For dosing types that have a fixed infusion or absorption duration (infusion and zero-
order), you can use overlapping doses. The doses are additive.

The following table describes the dosing types, the default parameters to estimate, and
lists the model components created and used for dosing.

Dosing Type Description SimBiology Model Components
Used

Default Parameters to
Estimate

''(empty
character
vector)

No dose The species
(Drug_CompartmentName) in
each compartment

None

SimBiology
desktop —
bolus

Assumes that the drug
amount is increased
instantly at the dose
time.

The species
(Drug_CompartmentName) in
each compartment

None

5-29

5 Pharmacokinetic Modeling

Dosing Type Description SimBiology Model Components
Used

Default Parameters to
Estimate

Command line
— Bolus

In the SimBiology model,
the initial concentration
of the drug is based on
dose amount and volume
of the compartment
containing the drug.

SimBiology
desktop —
infusion

Command line
— Infusion

Assumes that the infused
drug amount increases
at a constant known
absorption (or infusion)
rate over a known
duration.

The imported data set
must contain the rate and
not an infusion duration.
SimBiology uses this
information to change the
species concentration at
the constant rate over the
duration specified in the
data set.

The species
(Drug_CompartmentName) in
each compartment

None

SimBiology
desktop —
zero-order

Command line
— ZeroOrder

Assumes that the drug is
added at a constant rate
over fixed, but unknown
duration.

• The species
Drug_CompartmentName in
each compartment

• The parameter
(Tk0_CompartmentName)
in each compartment that
has zero-order dosing. This
parameter represents the
duration of drug absorption

Tk0_CompartmentName

(absorption duration)

5-30

 Create Pharmacokinetic Models

Dosing Type Description SimBiology Model Components
Used

Default Parameters to
Estimate

SimBiology
desktop —
first-order

Command
line —
FirstOrder

Assumes that the rate
at which the drug is
absorbed is not constant.

In the SimBiology
model, absorption rate is
assumed to be governed
by mass-action kinetics.

• A species
(Dose_CompartmentName)
representing the dose
amount before it is absorbed

• A species
(Drug_CompartmentName)
for each compartment

• A parameter
(ka_CompartmentName)
representing the absorption
rate of the drug

• A MassAction reaction
(Dose_CompartmentName

—>

Drug_CompartmentName)

with forward rate parameter
(ka_CompartmentName)

ka_CompartmentName

(absorption rate)

If you are using a custom model, or want to simulate a model with the dosing schedule
applied, see the following additional sources of information:

For information on ... See ...

Preparing the model before
simulating

“Prerequisites for Using Custom SimBiology
Models in Data Fitting” on page 5-37

Elimination Types

Elimination Type Description SimBiology Model
Components Created

Default Parameters to
Estimate

SimBiology
desktop — Linear
{Elimination

Rate, Volume}

Assumes simple
mass-action kinetics
in the elimination
of the drug. In
the SimBiology
model, elimination

• A parameter
representing the
elimination rate
(ke_CompartmentName)

• A MassAction
reaction (drug

• Compartment volume

(Capacity property)
• Elimination

rate constant
(ke_CompartmentName)

5-31

5 Pharmacokinetic Modeling

Elimination Type Description SimBiology Model
Components Created

Default Parameters to
Estimate

Command line —
'linear'

is specified by mass-
action kinetics with
the elimination rate
constant specified
by the forward rate
parameter (ke).

—> null) with
forward rate parameter
(ke_CompartmentName)
specific to the
compartement

• Inter-compartmental
clearance (Q) when
there is more than one
compartment.

See
“Intercompartmental
Clearance” on page
5-33.

SimBiology
desktop — Linear
{Clearance,

Volume}

Command line
— 'linear-
clearance'

Assumes simple
mass-action kinetics
in the elimination
of the drug. In the
SimBiology model,
similar to Linear
{Elimination

Rate, Volume}.
But, in addition,
this option lets you
specify the model in
terms of clearance
(Cl) where, Cl = ke
* volume).

• A parameter
representing
the clearance
(Cl_CompartmentName)

• A parameter
representing
the elimination
rate constant
(ke_CompartmentName)

• An
InitialAssignment

rule that initializes
ke_CompartmentName

based on the
initial values for
Cl_CompartmentName

and compartment
volume

• A MassAction
reaction (drug

—> null) with
forward rate parameter
(ke_CompartmentName)

• Compartment volume

(Capacity property)
• Clearance

(Cl_CompartmentName)
• Inter-compartmental

clearance (Q) when
there is more than one
compartment.

See
“Intercompartmental
Clearance” on page
5-33.

5-32

 Create Pharmacokinetic Models

Elimination Type Description SimBiology Model
Components Created

Default Parameters to
Estimate

SimBiology desktop
— Enzymatic
(Michaelis-

Menten)

Command line —
'enzymatic'

Assumes that
elimination is
governed by
Michaelis-Menten
kinetics.

• Parameter
representing the
Michaelis constant,
(Km_CompartmentName)

• A parameter for
maximum velocity
(Vm_CompartmentName

• A reaction with
Michaelis-Menten
kinetics (drug ->
null), with kinetic
law parameters
Vm_CompartmentName

and
Km_CompartmentName

• Compartment volume

(Capacity property)
• Parameter

(Km_CompartmentName)
• Parameter

(Vm_CompartmentName)
• Inter-compartmental

clearance (Q) when
there is more than one
compartment.

See
“Intercompartmental
Clearance” on page
5-33

Intercompartmental Clearance

The compartments created when you generate a SimBiology model form a chain and
each pair of linked compartments are connected by a transport reaction similar to
linear elimination. The addition of two compartments, C1 and C2, generates a reversible
mass-action reaction C1.Drug_C1 <-> C2.Drug. The forward rate parameter is the
compartmental clearance, Q12, divided by the volume of C1. The reverse rate parameter is
Q12, divided by the volume of C2.

The process of adding each pair of compartments in the chain Cm and Cn generates the
following model components:

• A parameter Qmn representing the compartmental clearance between those two
compartments. This parameter is added to the list of parameters to be estimated
(Estimated property of PKModelMap object).

• A parameter (kmn) representing the rate of transfer of the drug from Cm to Cn, where
kmn = Qmn/Vm.

• A parameter (knm) representing the rate of Cn to Cm, where knm = Qmn/Vn.

5-33

5 Pharmacokinetic Modeling

• A reversible mass-action reaction between the two compartments, Cm.Drug_Cm <->
Cn.Drug_Cn, with forward rate parameter kmn, and reverse rate parameter knm.

• An initial assignment rule that initializes the value of the parameter kmn, based on
the initial values for Cm and Qmn.

• An initial assignment rule that initializes the value of the parameter knm, based on
the initial values for Cn and Qmn.

Unit Conversion for Imported Data

Unit conversion converts the matching physical quantities to one consistent unit system
in order to resolve them. This conversion is in preparation for correct simulation, but
SimBiology returns the physical quantities in the model in units that you specify.

Regardless of whether unit conversion is on or off, you must express dosing data in
amount. By default, Unit Conversion is off, so you must ensure that units for the data
and the model are consistent with one another.

If Unit Conversion is on, you must specify units. If using the SimBiology desktop,
specify units in the Raw Data tab, when data is selected in the Project Explorer. If
using the command line, specify units in the PKData object.

Parameters in the model have default units. If unit conversion is on, you can change the
units as long as the dimensions are consistent. These default units, which you might use
to specify the values for the initial guess, are as follows.

Physical Quantity or Model Parameter Unit

Capacity (compartment volume) liter

First-order elimination rate 1/second

Km — Michaelis constant milligram/liter

Vm — (Vmax) Maximum reaction-velocity
(Michaelis-Menten kinetics)

milligram/second

Clearance liter/second

Tk0 (absorption duration) second

ka (absorption rate) 1/second

Use the configuration settings options to turn unit conversion on or off. For details, see
“Model Simulation” on page 4-2.

5-34

 Create Pharmacokinetic Models

For details on dimensional analysis for reaction rates, see “How Reaction Rates Are
Evaluated” on page 2-21.

5-35

5 Pharmacokinetic Modeling

About Data Fitting in PKPD Models

In this section...

“Data Fitting Functionality” on page 5-36
“Prerequisites for Data Fitting” on page 5-37
“Prerequisites for Using Custom SimBiology Models in Data Fitting” on page 5-37

Data Fitting Functionality

SimBiology lets you perform individual and population fitting on grouped data. This
functionality uses Statistics and Machine Learning Toolbox features (Version 7.3 or
later).

• Individual fit — Fit data separately for each individual using the nonlinear least
squares method, estimate parameters, and calculate residuals and the estimated
coefficient covariance matrix.

• Population fit — Estimate the fixed effects and the random sources of variation on
parameters, using nonlinear mixed-effects models.

You can use the following methods to estimate the fixed effects:

• LME — Linear mixed-effects approximation
• RELME — Restricted LME approximation
• FO — First-order estimate
• FOCE — First-order conditional estimate

The following results are returned for population fitting:

• The maximized log-likelihood for the fitted model
• The estimated error variance for the fitted model
• The Akaike information criterion for the fitted model
• The Bayesian information criterion for the fitted model
• The standard errors for the estimates of the fixed effects
• The error degrees of freedom for the model
• The weighted residuals for the fitted model

In addition, you can generate diagnostic plots that show:

5-36

 About Data Fitting in PKPD Models

• The predicted time courses and observations for an individual or the population
• Observed versus predicted values
• Weighted residuals versus time, group, or predictions
• Distribution of the weighted residuals
• A box-plot for random effects or parameter estimates from individual fitting

Prerequisites for Data Fitting

Before you fit parameters, the SimBiology desktop or the MATLAB Workspace must
contain the following:

• Data to use in the fitting (See “Importing Data — Supported Files and Data Types” on
page 5-7 for more information.)

• A model to fit (See “Create Pharmacokinetic Models” on page 5-25 for more
information.)

If you plan to use the command line, see the following for more information:
“Perform Data Fitting with PKPD Models” on page 5-41

Prerequisites for Using Custom SimBiology Models in Data Fitting

Overview

If you created a PK model using either the PKModelDesign object's construct method
at the command line or the wizard in the SimBiology desktop, you can skip this section.
This section provides information about working with a custom SimBiology model.

When using a custom model, you must provide information about whether dosing is
applicable and define which components of the SimBiology model represent the observed
response, the dose, and the estimated parameters. Use the PKModelMap object to define
these settings as shown in “Defining Model Components for Observed Response, Dose,
Dosing Type, and Estimated Parameters” on page 5-37.

Defining Model Components for Observed Response, Dose, Dosing Type, and Estimated
Parameters

The PKModelMap object holds information about the dosing type and defines which
components of the SimBiology model represent the observed response, the dose, and the
parameters to be estimated.

5-37

5 Pharmacokinetic Modeling

If you are using a custom SimBiology model that you did not create using either
the PKModelDesign object's construct method or the wizard, you must create a
PKModelMap object to define these relationships.

Consider the following regression function, y = f(k,u), where y is the measured or
observed response, given values of an input u, and parameter values k. In SimBiology,
the model represents f, which is used to generate the regression function, if y, k, and u
are identified in the model. You must, therefore, use the PKModelMap object to define
which components of the model represent y, k, and u. If applicable, the PKModelMap
object also needs information on the type of dosing or input being given to the model.

1 Import an SBML model:

modelObj = sbmlimport('lotka');

2 Create a PKModelMap object:

PKModelMapObj = PKModelMap;

3 Use the name of the model component to specify the corresponding property in the
PKModelMap object.

Model Component Represents PKModelMap Object Property

Object being driven by an input Dosed

Measured response Observed

Parameters to be estimated Estimated

For example:

set(PKModelMapObj, 'Observed', 'unnamed.y1');

set(PKModelMapObj, 'Estimated', {'Reaction1.c1', 'Reaction2.c2'});

Note: When specifying species names, qualify the name with the compartment
name in the form compartmentName.speciesName (for example,
nucleus.DNA). For names of parameters scoped at the reaction level, use
reactionName.parameterName. For parameters scoped at the model level, you do
not have to qualify the name.

4 Use the DosingType property to specify the type of dosing, if applicable. The
allowed types are '', 'Bolus', 'Infusion', 'FirstOrder', and 'ZeroOrder'.

For example:

5-38

 About Data Fitting in PKPD Models

set(PKModelMapObj, 'DosingType', 'Bolus');

Note: When using custom models with DosingType set to zero-order, you
must include a parameter that represents the duration of drug absorption.
Set the ZeroOrderDurationParameter property of the PKModelMap object
to the name of the duration parameter. For example, set(PKModelMapObj,
'ZeroOrderDurationParameter', 'Kdo');.

The previous example sets the observed response to a species y1, contained by a
compartment (unnamed), and sets the parameters to be estimated to the parameters c1
and c2 that are scoped to the reactions, Reaction1 and Reaction2, respectively.

For information on ... See ...

PKModelMap object properties and
allowed values

PKModelMap object Dosed,
DosingType, Estimated, and Observed,
ZeroOrderDurationParameter

Allowed dosing types “Dosing Types” on page 5-29
Parameter scoping “When Reactions, Rules, and Events Specify

Parameters” on page 2-16
Parameter fitting “Perform Data Fitting with PKPD Models” on page

5-41

Dosing Multiple Compartments in a Model

1 Use the name of the model component to specify the Dosed property in the
PKModelMap object.

For example, assume that a model contains two compartments named Central and
Peripheral. Specify the species names in the dosed compartments. For example:

set(PKModelMapObj, 'Dosed, {'Central.Drug_Central', ...

 'Peripheral.Drug_Peripheral'});

2 Use the DosingType property to specify the type of dosing if applicable. The allowed
types are '', 'Bolus', 'Infusion', 'FirstOrder', and 'ZeroOrder'. When
specifying dosing for multiple compartments, the order in the Dosed property is the
order in which the dosing type is applied.

5-39

5 Pharmacokinetic Modeling

For example, if Central takes zero-order dosing and Peripheral takes a first-
order dosing enter:

set(PKModelMapObj, 'DosingType', {'ZeroOrder', 'FirstOrder'});

3 Because the model includes zero-order as a DosingType, you must include
a parameter that represents the duration of drug absorption and is used
when simulating the model with dosing information or during fitting. Set the
ZeroOrderDurationParameter property of the PKModelMap object to the name of
the duration parameter. For example,

set(PKModelMapObj, 'ZeroOrderDurationParameter', {'Kdo', ''})

Specify the parameters in the same order as the species in the Dosed property.

5-40

 Perform Data Fitting with PKPD Models

Perform Data Fitting with PKPD Models

In this section...

“Data Fitting Workflow” on page 5-41
“Specify and Classify the Data to Fit” on page 5-42
“Specify Solver Type and Options for Fitting” on page 5-44
“Set Initial Estimates” on page 5-44
“Specify a Nonlinear, Mixed-Effects Model” on page 5-45
“Specify a Covariate Model” on page 5-47
“Specify the Covariance Pattern of Random Effects” on page 5-49
“Specify an Error Model” on page 5-50
“Specify Parameter Transformations” on page 5-51
“Perform Population Fitting” on page 5-52
“Simultaneously Fitting Data from Multiple Dose Levels” on page 5-56
“Perform Individual Fitting” on page 5-56

Data Fitting Workflow

The following steps show one of the workflows you can use at the command line to fit a
PK model and estimate parameters:

1 Import data as shown in “Importing Data” on page 5-13.
2 Specify the structural model by creating a PK model as shown in “Create a

Pharmacokinetic Model Using the Command Line” on page 5-27. Alternatively, if
you have a SimBiology model that you want to use in fitting, see “Prerequisites for
Using Custom SimBiology Models in Data Fitting” on page 5-37.

3 Classify the data set to use in fitting. See “Specify and Classify the Data to Fit” on
page 5-42.

4 Specify the initial guesses for the parameters to be estimated, as shown in “Set
Initial Estimates” on page 5-44.

5 Perform individual or population fits:

• For individual fits:

5-41

5 Pharmacokinetic Modeling

• (Optional) Specify an error model or weights. See “Specify an Error Model” on
page 5-50.

• (Optional) Set tolerances.
• (Optional) Specify maximum iterations.
• (Optional) Specify to pool the data, which simultaneously fits data from

multiple dose levels using the same model parameters for each dose.
• For population fits:

• Specify the statistical model:

• Specify the covariate model and the covariance matrix. See “Specify a
Covariate Model” on page 5-47 and “Specify the Covariance Pattern of
Random Effects” on page 5-49.

• (Optional) Specify the error model. See “Specify an Error Model” on page
5-50.

• (Optional) Set tolerances.
• (Optional) Specify maximum iterations.

6 Obtain and visualize results.

Specify and Classify the Data to Fit

In order to use the imported data in fitting, you must identify required columns in the
data set that was previously imported as shown in “Importing Data” on page 5-13.

Use the PKData object to specify the data set containing the observed data to use
in fitting. The properties of the PKData object specify what each column in the data
represents.

To create the PKData object:

1 Create the PKData object for the data set data.

pkDataObject = PKData(data);

PKData assigns the data set data to the read-only DataSet property.
2 Use the column headers in the data set to specify the following properties for the

column in the data set.

5-42

 Perform Data Fitting with PKPD Models

Column in Data Set Represents PKData Object Property

Group identification labels GroupLabel

Independent variable
(For example, time)

IndependentVarLabel

Dependent variable
(For example, measured response)

DependentVarLabel

Amount of dose given DoseLabel

Rate of infusion (when applicable). Data
must contain rate (amount/time) and
not infusion time.

RateLabel

Covariates
(For example, age, gender, weight)

CovariateLabels

For example, for the tobramycin data set [1]:

pkDataObject.GroupLabel = 'ID';

pkDataObject.IndependentVarLabel = 'Time';

pkDataObject.DependentVarLabel = 'Response';

pkDataObject.DoseLabel = 'Dose';

pkDataObject.CovariateLabels = {'WT','HT','AGE', 'SEX', 'CLCR'};

Note: For the subset of data belonging to a single group (as defined by the column
in your data set that represents group identification labels, which you map to the
GroupLabel property), the software allows multiple observations made at the same
time. If this is true for your data, be aware that:

• These data points are not averaged, but fitted individually.
• Different number of observations at different times cause some time points to be

weighted more.

Tip If dosing applies to more than one compartment in the model, specify the
DoseLabel property as follows:

pkDataObject.DoseLabel = {'Dose1', 'Dose2'};

5-43

5 Pharmacokinetic Modeling

Dose1 and Dose2 are names of columns containing dose information for
compartments. A one-to-one relationship must exist between the number and order
of elements in the DoseLabel property and the Dosed property of the corresponding
PKModelMap object.

Tip If your model measures multiple responses, specify the DependentVarLabel
property as follows:

pkDataObject.DependentVarLabel = {'Response1', 'Response2'};

Response1 and Response2 are names of columns containing response
measurements. A one-to-one relationship must exist between the number and order
of elements in the DependentVarLabel property and the Observed property of the
corresponding PKModelMap object.

When you assign a column containing group identification labels to the GroupLabel
property, PKData sets these read-only properties as follows:

• The GroupNames property is set to the unique names found in the group column.
• The GroupID property is set to an integer corresponding to the unique names

found in the group column.

Specify Solver Type and Options for Fitting

If you specify a stochastic solver and options in the Configset object associated with
your model, be aware that during fitting SimBiology temporarily changes:

• SolverType property to the default solver of ode15s
• SolverOptions property to the options last configured for a deterministic solver

Set Initial Estimates

Caution If your model includes active variants that specify alternate values for the
parameters to estimate, the variants are ignored for those parameters during fitting.

To set the initial estimates (or initial guesses) for the parameters with fixed effects to
estimate, first identify the sequence of the parameters in the model by querying the

5-44

 Perform Data Fitting with PKPD Models

PKModelMap object. Next, construct a vector, beta0, containing the initial conditions.
For information about PKModelMap objects, see step 4 in “Create a Pharmacokinetic
Model Using the Command Line” on page 5-27.

1 Query the Estimated property of the PKModelMap object:

PKModelMapObj.Estimated

MATLAB returns the sequence of the parameters to be estimated. For example:

ans =

 'Central'

 'Cl_Central'

2 Set the initial estimates for the parameters. For example:

beta0 = [10.0, 1.0];

For information on ... See ...

The parameters added to the model • “Dosing Types” on page 5-29
• “Elimination Types” on page 5-31

Default units for the above parameters “Unit Conversion for Imported Data” on
page 5-34

Specify a Nonlinear, Mixed-Effects Model

Suppose data for a nonlinear regression model falls into one of m distinct groups i = 1, ...,
m. (Specifically, suppose that the groups are not nested.) To specify a general, nonlinear,
mixed-effects (NLME) model for this data:

1 Define group-specific model parameters φi as linear combinations of fixed effects β
and random effects bi.

2 Define response values yi as a nonlinear function f of the parameters and group-
specific covariate variables Xi.

The model is:

j q h h

j e

i i i i i

i i i i

A B N

y f X

= +

= +

, (,)

(,)

, l

where

Alternatively

 ∼ 0 Y

oog log (,)y f Xi i i i= +j e

5-45

5 Pharmacokinetic Modeling

This formulation of the nonlinear, mixed-effects model uses the following notation:

φi A vector of group-specific model parameters
θ A vector of fixed effects, modeling population parameters
ηi A vector of multivariate, normally distributed, group-specific, random effects
Ai A group-specific design matrix for combining fixed effects
Bi A group-specific design matrix for combining random effects
Xi A data matrix of group-specific covariate values
yi A data vector of group-specific response values
f A general, real-valued function of φi and Xi

εi • For sbionlmefit, you can specify different error models as shown in
“Specify an Error Model” on page 5-50.

• For sbionlmefitsa, you can specify different error models as shown in
“Specify an Error Model” on page 5-50.

Ψ A covariance matrix for the random effects

σ2 The error variance, assumed to be constant across observations

For example, consider a one-compartment model with first-order dosing and linear
clearance. The group-specific parameters (φ) in the model are clearance (Cl),
compartment volume (V), and absorption rate constant (ka). From the model:

Cl

V

ka ka

Cl

V

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

=
Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

+
1 0 0

0 1 0

0 0 1

1 0 0

0

q
q

q
11 0

0 0 1

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

h
h

h

Cl

V

ka

In SimBiology, Bi is an identity matrix. That is, sbionlmefit does not support the
specification of a different random-effects design matrix. You can alter the design
matrices, as necessary, to introduce weighting of individual effects.

The Statistics and Machine Learning Toolbox function nlmefit fits the general,
nonlinear, mixed-effects model to data, estimating the fixed and random effects. The
function also estimates the covariance matrix Ψ for the random effects. Additional
diagnostic outputs allow you to assess trade-offs between the number of model
parameters and the goodness of fit. See “Mixed-Effects Models” in the Statistics and
Machine Learning Toolbox documentation for more information.

5-46

 Perform Data Fitting with PKPD Models

Specify a Covariate Model

Construct a CovariateModel object to define the relationship between parameters
and covariates. After constructing the object, modify the FixedEffectValues
property of the object before using the object as an input argument to sbionlmefit or
sbionlmefitsa, to estimate nonlinear mixed effects.

If the NLME model on page 5-45 assumes a group-dependent covariate such as
weight (w), the model becomes:

Cl

V

k

w

a
ka

Cl w

i

Cl

V

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

=
Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

Ê

Ë

Á
Á
Á

1 0 0

0 1 0 0

0 0 1 0

q
q

q

q /

ÁÁÁ

ˆ

¯

˜
˜
˜
˜̃

+
Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

1 0 0

0 1 0

0 0 1

h
h
h

Cl

V

ka

Thus, the parameter for clearance (Cl) for an individual is Cli = θCl + θCl/w * wi + ηCli.

Use the following procedure to specify a covariate model. If you are using the tobramycin
data set, make sure you first complete the following procedures:

• “Importing Data from NONMEM-Formatted Files” on page 5-14
• “Create a Pharmacokinetic Model Using the Command Line” on page 5-27
• “Specify and Classify the Data to Fit” on page 5-42
• “Set Initial Estimates” on page 5-44

1 Use the CovariateModel constructor function to construct an empty
CovariateModel object:

covModel = CovariateModel;

2 Set the Expression property of the object to define the relationship between
parameters and covariates in the CovariateModel object, where Cl, v, and ka are
parameters, weight is a covariate, theta1, theta2, theta3, and theta4 are fixed
effects, and eta1, eta2, and eta3 are random effects.

covModel.Expression = {'Cl = exp(theta1 + theta4*weight + eta1)',...

 'v = exp(theta2 + eta2)',...

 'ka = exp(theta3 + eta3)'};

3 Display a list of the descriptions of the fixed effects (theta1 and theta2) in the
CovariateModel object:

5-47

5 Pharmacokinetic Modeling

disp('Fixed Effects Descriptions:');

disp(covModel.FixedEffectDescription)

Your output appears as follows, where each character vector describes the role of a
fixed effect in the expression equation:

Fixed Effects Descriptions:

 'Cl'

 'v'

 'ka'

 'Cl/weight'

4 Use the constructDefaultFixedEffectValues method of the CovariateModel
object to create a structure containing the initial estimates for the fixed effects in the
object. The initial estimates in this structure are set to a default of zero:

initialEstimates = covModel.constructDefaultFixedEffectValues

Your output appears as:

initialEstimates =

 theta1: 0

 theta2: 0

 theta3: 0

 theta4: 0

5 Edit the initialEstimates structure to set the initial estimates of the fixed
effects:

initialEstimates.theta1 = 1.408;

initialEstimates.theta2 = 0.061;

initialEstimates.theta3 = 0.31;

Tip Typically, these initial estimates are values you determine from a previous fit of
the data.

6 Use the modified initialEstimates structure to update the FixedEffectValues
property of the CovariateModel object:

covModel.FixedEffectValues = initialEstimates;

Now covModel, the CovariateModel object, is ready to submit as an input
argument to sbionlmefit or sbionlmefitsa.

5-48

 Perform Data Fitting with PKPD Models

Specify the Covariance Pattern of Random Effects

By default, the function you use to perform population fits (nlmefit or nlmefitsa)
assumes a diagonal covariance matrix (no covariance among the random effects). To
specify a different covariance pattern of random effects, use the 'CovPattern' option.
In the previous example, assuming that each of the parameters has random effects and
that Cl and V exhibit covariance, the covariance pattern of random effects would be a
logical array:

1 1 0

1 1 0

0 0 1

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

1 Create an options struct with the specified covariance pattern:

options.CovPattern = [1, 1, 0; 1, 1, 0; 0, 0, 1];

2 Specify the arguments for sbionlmefit or sbionlmefitsa:

[results, simdataI, simdataP] = sbionlmefit(modelObj,...

 PKModelMapObj, pkDataObject, beta0, options)

If you are using the tobramycin data set [1], do the following:

1 Create an options struct with the specified covariance pattern:

options.CovPattern = [1, 0; 0, 1];

2 Specify the arguments for sbionlmefit:

[results, simdataI, simdataP] = sbionlmefit(modelObj,...

 PKModelMapObj, pkDataObject, beta0, options)

results =

 NLMEResults handle

 Properties:

 FixedEffects: [2x3 dataset]

 RandomEffects: [97x2 dataset]

 IndividualParameterEstimates: [97x2 dataset]

 PopulationParameterEstimates: [97x2 dataset]

 RandomEffectCovarianceMatrix: [2x2 dataset]

 EstimatedParameterNames: {2x1 cell}

5-49

5 Pharmacokinetic Modeling

 CovariateNames: {'WT' 'HT' 'AGE' 'SEX' 'CLCR'}

 FixedEffectsStruct: [1x1 struct]

 stats: [1x1 struct]

results.FixedEffects

ans =

 Description Estimate StandardError

 'Central' 3.0478 0.064369

 'Cl_Central' 1.3054 0.061095

For more information, see nlmefit or nlmefitsa in the Statistics and Machine
Learning Toolbox documentation.

Fitting the model and estimating the covariance matrix Ψ often leads to further
refinements. A relatively small estimate for the variance of a random effect suggests that
it can be removed from the model. Similarly, relatively small estimates for covariances
among certain random effects suggest that a full covariance matrix is unnecessary. Since
random effects are unobserved, Ψ must be estimated indirectly. Specifying a diagonal or
block-diagonal covariance pattern for Ψ can improve convergence and efficiency of the
fitting algorithm.

Specify an Error Model

You can specify any of the following error models when using the sbionlinfit,
sbionlmefit, or sbionlmefitsa function. Each model defines the error using a
standard normal (Gaussian) variable e, the function value f, and one or two parameters,
a and b. The default error model is 'constant'.

• 'constant': y = f + a*e (default)
• 'proportional': y = f + b*abs(f)*e
• 'combined': y = f + (a+b*abs(f))*e
• 'exponential': y = f*exp(a*e), or equivalently log(y) = log(f) + a*e

To define an error model:

1 Create an optionStruct input argument and set the ErrorModel field to specify
one of the above error models. For example:

optionStruct.ErrorModel = 'proportional';

5-50

 Perform Data Fitting with PKPD Models

2 Specify the optionStruct input argument for sbionlinfit, sbionlmefit, or
sbionlmefitsa, as shown in “Perform Individual Fitting” on page 5-56 or
“Perform Population Fitting” on page 5-52.

See also or nlinfit, nlmefit, or nlmefitsa in the Statistics and Machine Learning
Toolbox documentation.

Specify Parameter Transformations

To specify parameter transformations, use the ParamTransform option in
sbionlinfit, sbionlmefit and sbionlmefitsa. The ParamTransform option lets
you specify either no transformation, or the log, probit, or logit transformation.

Note: Do not use the ParamTransform option to specify parameter transformations
when providing a CovariateModel object to a fitting function. The CovariateModel
object provides the parameter transformation.

The underlying algorithm in nlmefit assumes that parameters follow a normal
distribution. This assumption may not hold for biological parameters that are
constrained to be positive, such as volume and clearance. You may specify a
transformation function for the estimated parameters, so that the transformed
parameters follow a normal distribution.

By default, the SimBiology fitting functions choose a log transform for all estimated
parameters. Parameters that are constrained between the values 0 and 1, like absorption
fraction, can be transformed by the probit or logit transformations described below.

The probit function is the inverse cumulative distribution function (CDF) associated
with the standard normal distribution. To apply the probit transform to a variable x
in MATLAB, use the Statistics and Machine Learning Toolbox function norminv: t =
norminv(x). To untransform a variable t, use the function normcdf: x = normcdf(t).

The logit function is the inverse of the sigmoid function. To apply the logit transform
to a variable x in MATLAB, use the following expression: t = log(x) - log(1-x). To
untransform the variable t, use x = 1/(1+exp(-t)).

1 For the ParamTransform option, specify a vector of values equal to the number of
parameters to be estimated. The values must be one of the integer codes listed in

5-51

5 Pharmacokinetic Modeling

nlmefitsa or nlmefit specifying the transformation for the corresponding value of
the parameters to be estimated. For example

options.ParamTransform = [0 1 2];

See nlmefit and nlmefitsa for more information.
2 Specify the arguments for sbionlmefit or sbionlmefitsa, as shown in “Perform

Population Fitting” on page 5-52.

For individual fitting, see “Perform Individual Fitting” on page 5-56.

Perform Population Fitting

The sbionlmefit and sbionlmefitsa functions let you specify a SimBiology model
that you want to use in fitting. These functions use the nlmefit and nlmefitsa
functions from the Statistics and Machine Learning Toolbox to fit data with both fixed
and random sources of variation using nonlinear mixed-effects and return the estimates.
Both nlmefitand nlmefitsa fit the model by maximizing an approximation to the
marginal likelihood with random effects integrated out assuming the following:

• Random effects are multivariate, normally distributed, and independent between
groups.

• Observation errors are independent, identically normally distributed, and
independent of random effects.

1 (Optional) Set the tolerance or maximum iteration options. Use an options structure
that is an input argument for sbionlmefit or sbionlmefitsa:

optionStruct.Options.TolX = 1.0E-4;

optionStruct.Options.TolFun = 1.0E-4;

optionStruct.Options.MaxIter = 200;

2 Specify the model object, the PKModelMap object, the PKData object, the
PKCovariateModel object, a vector containing the initial estimates for the fixed
effects, and the options:
[results, simdataI, simdataP] = sbionlmefit(modelObj,...

 PKModelMapObj, pkDataObject, CovariateModelObject, beta0, optionStruct);

Note: If your population fit uses multiple doses, make sure each element in the
Dosed property of the PKModelMap object is unique.

5-52

 Perform Data Fitting with PKPD Models

Note: In your PKData object, for each subset of data belonging to a single group
(as defined in the data column specified by the GroupLabel property), the software
allows multiple observations made at the same time. If this is true for your data, be
aware that:

• These data points are not averaged, but fitted individually.
• Different number of observations at different times cause some time points to be

weighted more.

sbionlmefit and sbionlmefitsa return the following:

• results, an object containing estimated values and other statistics. For more
information, see the sbionlmefit and sbionlmefitsa reference pages.

• simdataI, a SimData object containing the data from simulating the model
using the estimated parameter values for individuals, which includes both the
fixed and random effects.

• simdataP, SimData object containing the data from simulating the model
using the estimated parameter values for the population, which includes only the
fixed effects.

3 Plot the data from the data set. For example, in the imported data set used for
fitting, ds, ID, Time, and Response are the column headers for the columns
containing group IDs, time, and the response variable, respectively.

p = sbiotrellis(ds, 'ID', 'Time', 'Response')

Note: If your data set has multiple responses, with column headers Response1 and
Response2 containing the response variables, you plot the data as follows:

Response = {'Response1', 'Response2'}

p = sbiotrellis(ds, 'ID', 'Time', Response)

4 Use the plot method on the trellis plot object p, returned by sbiotrellis to
overlay data, using default values for the second and third input arguments.

p.plot(simdataP, [], '', PKModelMapObj.Observed);

For a description of the results, see sbionlmefit in the SimBiology documentation.

5-53

5 Pharmacokinetic Modeling

For more information, see the following topics in the Statistics and Machine Learning
Toolbox documentation:

• “Nonlinear Regression”
• “Mixed-Effects Models”
• nlmefit

Obtaining the Status of Fitting

The sbiofitstatusplot function dynamically plots the progress of the fitting task.
During the task, the function plots the fixed effects (β), the estimates for the diagonal
elements of the covariance matrix for the random effects (Ψ), and the log-likelihood.
This functionality is useful for large and complex models when you expect the time to
return the results to be longer than a few minutes. Use the options structure that is an
argument for the sbionlmefit function:

% Create options structure with 'OutputFcn'.

options.Options.OutputFcn = @sbiofitstatusplot;

% Pass options structure with OutputFcn to sbionlmefit function.

results = sbionlmefit(..., options);

The following figure shows the type of plots obtained.

5-54

 Perform Data Fitting with PKPD Models

Tips for interpreting status plots:

• The fitting function tries to maximize the log-likelihood. When the plot begins to
display a flat line, this might indicate that maximization is complete. Try setting
the maximum iterations to a lower number to reduce the number of iterations you
need and improve performance. For information on how to set iteration options, see
“Perform Population Fitting” on page 5-52.

• Plots for the fixed effects (β) and the estimates for the diagonal elements of the
covariance matrix for the random effects (Ψ), should show convergence. If you see
oscillations, or jumps without accompanying improvements in the log-likelihood, the
model may be over-parameterized. Try the following:

5-55

5 Pharmacokinetic Modeling

• Reduce the number of fixed effects.
• Reduce the number of random effects.
• Simplify the covariance matrix pattern of random effects.

See also sbiofitstatusplot in the SimBiology documentation.

Simultaneously Fitting Data from Multiple Dose Levels

When performing population fitting using nonlinear regression, you can simultaneously
fit data from multiple dose levels by either:

• Using sbionlmefit with a CovariateModel object input argument and omitting
the random effect (eta) from the expressions in the CovariateModel object.

• Using sbionlmefit with an InitEstimates input argument and setting the
REParamsSelect field or name-value pair input argument to a 1-by-n logical vector,
with all entries set to false, where n equals the number of fixed effects.

Perform Individual Fitting

The sbionlinfit function lets you specify a SimBiology model to fit using the nlinfit
function (individual fit). The nlinfit function uses nonlinear least squares and returns
parameter estimates, residuals, and the estimated coefficient covariance matrix.

1 (Optional) Specify an error model, set the tolerance, set the maximum iteration, or
set the data pooling option, which lets you simultaneously fit data from multiple dose
levels using the same model parameters for each dose. Use an options structure that
is an input argument for sbionlinfit:

optionStruct.ErrorModel = 'proportional';

optionStruct.TolX = 1.0E-8;

optionStruct.TolFun = 1.0E-8;

optionStruct.MaxIter = 100;

optionStruct.Pooled = true;

2 Specify the model object, the PKModelMap object, the PKData object, a vector
containing the initial estimates for the fixed effects, and the options:

[results, simdataI] = sbionlinfit(modelobj,...

 PKModelMapObj, PKDataObj, beta0, optionStruct);

5-56

 Perform Data Fitting with PKPD Models

Note: If your individual fit uses multiple doses, ensure each element in the Dosed
property of the PKModelMap object is unique.

Note: In your PKData object, for each subset of data belonging to a single group (as
defined in the data column specified by the GroupLabel property), the software
allows multiple observations made at the same time. If this is true for your data, be
aware that:

• These data points are not averaged, but fitted individually.
• Different number of observations at different times cause some time points to be

weighted more.

sbionlinfit returns the following:

• A results array of objects, with each object containing the following for one
group:

• ParameterEstimates — A dataset array containing fitted coefficients and
their standard errors.

• CovarianceMatrix — Estimated covariance matrix for the fitted coefficients.
• beta — Vector of scalars specifying the fitted coefficients in transformed

space.
• R — Residuals.
• J — Jacobian of modelObject.
• COVB — Estimated covariance matrix for the transformed coefficients.
• mse — Scalar specifying the estimate of the error of the variance term.
• errorparam — Estimated parameters of the error model or an empty array if

you specified weights using the 'Weights' name-value pair argument.
• simdataI, a SimData object containing the data from simulating the model

using the estimated parameter values, for individuals.
3 Plot the data from the data set. For example, in the imported data set (ds), ID, Time

and Response are the column headers for the columns containing group IDs, time,
and the response variable respectively.

5-57

5 Pharmacokinetic Modeling

p = sbiotrellis(ds, 'ID', 'Time', 'Response')

Note: If your data set has multiple responses, with column headers Response1 and
Response2 containing the response variables, then plot the data as follows:

Response = {'Response1', 'Response2'}

p = sbiotrellis(ds, 'ID', 'Time', Response)

4 Use the plot method on the trellis plot object p, returned by sbiotrellis to overlay
data, using default values for the second and third input arguments.

p.plot(simdataI, [], '', PKModelMapObj.Observed);

For more information, see “Nonlinear Regression” and nlinfit in the Statistics and
Machine Learning Toolbox documentation.

5-58

A

Creating Reaction Rates

A Create Reaction Rates

Create Reaction Rates

• “Define Reaction Rates with Mass Action Kinetics” on page A-3
• “Define Reaction Rates with Enzyme Kinetics” on page A-9

A-2

 Define Reaction Rates with Mass Action Kinetics

Define Reaction Rates with Mass Action Kinetics

Definition of Mass Action Kinetics

Mass action describes the behavior of reactants and products in an elementary chemical
reaction. Mass action kinetics describes this behavior as an equation where the velocity
or rate of a chemical reaction is directly proportional to the concentration of the
reactants.

Zero-Order Reactions

With a zero-order reaction, the reaction rate does not depend on the concentration of
reactants. Examples of zero-order reactions are synthesis from a null species, and
modeling a source species that is added to the system at a specified rate.

 reaction: null -> P

reaction rate: k mole/second

 species: P = 0 mole

 parameters: k = 1 mole/second

Note: When specifying a null species, the reaction rate must be defined in units of
amount per unit time not concentration per unit time.

Entering the reaction above into the software and simulating produces the following
result:

A-3

A Define Reaction Rates with Mass Action Kinetics

Zero-Order Mass Action Kinetics

Note: If the amount of a reactant with zero-order kinetics reaches zero before the end of
a simulation, then the amount of reactant can go below zero regardless of the solver or
tolerances you set.

First-Order Reactions

With a first-order reaction, the reaction rate is proportional to the concentration of a
single reactant. An example of a first-order reaction is radioactive decay.

 reaction: R -> P

reaction rate: k*R mole/(liter*second)

 species: R = 10 mole/liter

 P = 0 mole/liter

 parameters: k = 1 1/second

Entering the reaction above into the software and simulating produces the following
results:

A-4

 Define Reaction Rates with Mass Action Kinetics

First-Order Mass Action Kinetics

Second-Order Reactions

A second-order reaction has a reaction rate that is proportional to the square or the
concentration of a single reactant or proportional to two reactants. Notice the space
between the reactant coefficient and the name of the reactant. Without the space, 2R
would be considered the name of a species.

 reaction: 2 R -> P

reaction rate: k*R^2 mole/(liter*second)

 species: R = 10 mole/liter

 P = 0 mole/liter

 parameters: k = 1 liter/(mole*second)

Entering the reaction above into the software and simulating produces the following
results:

A-5

A Define Reaction Rates with Mass Action Kinetics

Second-Order Kinetics with Single Reactant

With two reactants, the reaction rate depends on the concentration of two of the
reactants.

 reaction: R1 + R2 -> P

reaction rate: k*R1*R2 mole/(liter*second)

 species: R1 = 10 mole/liter

 R2 = 8 mole/liter

 P = 0 mole/liter

 parameters: k = 1 liter/(mole*second)

Enter the reaction above into the software and simulating produces the following results.
There is a difference in the final values because the initial amount of one of the reactants
is lower than the other. After the first reactant is used up, the reaction stops.

A-6

 Define Reaction Rates with Mass Action Kinetics

Second-Order Kinetics with Two Reactants

Reversible Mass Action

You can model reversible reactions with two separate reactions or with one reaction.
With a single reversible reaction, the reaction rates for the forward and reverse reactions
are combined into one expression. Notice the angle brackets before and after the hyphen
to represent a reversible reaction.

 reaction: R <-> P

reaction rate: kf*R - kr*P mole/(liter*second)

 species: R = 10 mole/liter

 P = 0 mole/liter

 parameters: kf = 1 1/second

 kr = 0.2 1/second

Entering the reaction above into the software and simulating produces the following
results. At equilibrium when the rate of the forward reaction equals the reverse reaction,
v = kf*R - kr*P = 0 and P/R = kf/kr.

A-7

A Define Reaction Rates with Mass Action Kinetics

A-8

 Define Reaction Rates with Enzyme Kinetics

Define Reaction Rates with Enzyme Kinetics

Simple Model for Single Substrate Catalyzed Reactions

A simple model for enzyme-catalyzed reactions starts a substrate S reversibly binding
with an enzyme E. Some of the substrate in the substrate/enzyme complex is converted to
product P with the release of the enzyme.

S + E ES E + P
k1

k1r

k2
æ Æææ
¨ æææ æ Æææ

v = k [S][E], v = k [ES], v = k [ES]1 1 1r 1r 2 2

This simple model can be defined with

• Differential rate equations. See “Enzyme Reactions with Differential Rate Equations”
on page A-9.

• Reactions with mass action kinetics. See “Enzyme Reactions with Mass Action
Kinetics” on page A-11.

• Reactions with Henri-Michaelis-Menten kinetics. See “Enzyme Reactions with
Irreversible Henri-Michaelis-Menten Kinetics” on page A-12.

Enzyme Reactions with Differential Rate Equations

The reactions for a single-substrate enzyme reaction mechanism (see “Simple Model
for Single Substrate Catalyzed Reactions” on page A-9) can be described with
differential rate equations. You can enter the differential rate equations into the software
as rate rules.

 reactions: none

 reaction rate: none

 rate rules: dS/dt = k1r*ES - k1*S*E

 dE/dt = k1r*ES + k2*ES - k1*S*E

 dES/dt = k1*S*E - k1r*ES - k2*ES

 dP/dt = k2*ES

 species: S = 8 mole

 E = 4 mole

 ES = 0 mole

 P = 0 mole

A-9

A Define Reaction Rates with Enzyme Kinetics

 parameters: k1 = 2 1/(mole*second)

 k1r = 1 1/second

 k2 = 1.5 1/second

Remember that the rate rule dS/dt = f(x) is written in a SimBiology rate rule
expression as S = f(x). For more information about rate rules see “Rate Rules” on page
2-25.

Alternatively, you could remove the rate rule for ES, add a new species Etotal for the
total amount of enzyme, and add an algebraic rule 0 = Etotal - E - ES, where the
initial amounts for Etotal and E are equal.

 reactions: none

 reaction rate: none

 rate rules: dS/dt = k1r*ES - k1*S*E

 dE/dt = k1r*ES + k2*ES - k1*S*E

 dP/dt = k2*ES

 algebraic rule: 0 = Etotal - E - ES

 species: S = 8 mole

 E = 4 mole

 ES = 0 mole

 P = 0 mole

 Etotal = 4 mole

A-10

 Define Reaction Rates with Enzyme Kinetics

 parameters: k1 = 2 1/(mole*second)

 k1r = 1 1/second

 k2 = 1.5 1/second

Enzyme Reactions with Mass Action Kinetics

Determining the differential rate equations for the reactions in a model is a time-
consuming process. A better way is to enter the reactions for a single substrate enzyme
reaction mechanism directly into the software. The following example using models an
enzyme catalyzed reaction with mass action kinetics. For a description of the reaction
model, see “Simple Model for Single Substrate Catalyzed Reactions” on page A-9.

 reaction: S + E -> ES

reaction rate: k1*S*E (binding)

 reaction: ES -> S + E

reaction rate: k1r*ES (unbinding)

 reaction: ES -> E + P

reaction rate: k2*ES (transformation)

 species: S = 8 mole

 E = 4 mole

 ES = 0 mole

 P = 0 mole

 parameters: k1 = 2 1/(mole*second)

 k1r = 1 1/second

 k2 = 1.5 1/second

The results for a simulation using reactions are identical to the results from using
differential rate equations.

A-11

A Define Reaction Rates with Enzyme Kinetics

Enzyme Reactions with Irreversible Henri-Michaelis-Menten Kinetics

Representing an enzyme-catalyzed reaction with mass action kinetics requires you
to know the rate constants k1, k1r, and k2. However, these rate constants are rarely
reported in the literature. It is more common to give the rate constants for Henri-
Michaelis-Menten kinetics with the maximum velocity Vm=k2*E and the constant Km =
(k1r + k2)/k1. The reaction rate for a single substrate enzyme reaction using Henri-
Michaelis-Menten kinetics is given below. For information about the model, see “Simple
Model for Single Substrate Catalyzed Reactions” on page A-9.

v =
Vmax[S]

Km + [S]

The following example models an enzyme catalyzed reaction using Henri-Michaelis-
Menten kinetics with a single reaction and reaction rate equation. Enter the reaction
defined below into the software and simulate.

 reaction: S -> P

reaction rate: Vmax*S/(Km + S)

 species: S = 8 mole

A-12

 Define Reaction Rates with Enzyme Kinetics

 P = 0 mole

 parameters: Vmax = 6 mole/second

 Km = 1.25 mole

The results show a plot slightly different from the plot using mass action kinetics. The
differences are due to assumptions made when deriving the Michaelis-Menten rate
equation.

A-13

B

Create Rate Rules

B Create Rate Rules

Create Rate Rules

• “Create a Rate Rule for a Constant Rate of Change” on page B-3
• “Create a Rate Rule for an Exponential Rate of Change” on page B-6
• “Create a Rate Rule to Define a Differential Rate Equation” on page B-8
• “Create a Rate Rule for the Rate of Change That Is Determined by Another Species”

on page B-9

B-2

 Create a Rate Rule for a Constant Rate of Change

Create a Rate Rule for a Constant Rate of Change

This example shows how to increase the amount or concentration of a species by a
constant value using the zero-order rate rule. For example, suppose species x increases
by a constant rate k. The rate of change is:

Set the initial amount of species x to 2, and the value of parameter k to 1. Use the
following commands to set up a SimBiology model accordingly and simulate it.

m = sbiomodel('m');

c = addcompartment(m,'comp');

s = addspecies(m,'x','InitialAmount',2);

p = addparameter(m,'k','Value',1);

r = addrule(m,'x = k','RuleType','rate');

[t,sd,species] = sbiosimulate(m);

plot(t,sd);

legend(species)

xlabel('Time');

ylabel('Species Amount');

B-3

B Create a Rate Rule for a Constant Rate of Change

Alternatively, you could model a constant increase in a species using the Mass Action
reaction null -> x with the forward rate constant k.

clear

m = sbiomodel('m');

c = addcompartment(m,'comp');

s = addspecies(m,'x','InitialAmount',2);

r = addreaction(m,'null -> x');

kl = addkineticlaw(r,'MassAction');

p = addparameter(kl,'k','Value',1);

kl.ParameterVariableNames = 'k';

[t,sd,species] = sbiosimulate(m);

plot(t,sd);

legend(species)

B-4

 Create a Rate Rule for a Constant Rate of Change

xlabel('Time');

ylabel('Species Amount');

B-5

B Create a Rate Rule for an Exponential Rate of Change

Create a Rate Rule for an Exponential Rate of Change

This example shows how to change the amount of a species similar to a first-order
reaction using the first-order rate rule. For example, suppose the species x decays
exponentially. The rate of change of species x is:

The analytical solution is:

where is the amount of species at time t, and is the initial amount. Use the
following commands to set up a SimBiology model accordingly and simulate it.

m = sbiomodel('m');

c = addcompartment(m,'comp');

s = addspecies(m,'x','InitialAmount',2);

p = addparameter(m,'k','Value',1);

r = addrule(m,'x = -k * x','RuleType','rate');

[t,sd,species] = sbiosimulate(m);

plot(t,sd);

legend(species);

xlabel('Time');

ylabel('Species Amount');

B-6

 Create a Rate Rule for an Exponential Rate of Change

If the amount of a species x is determined by a rate rule and x is also in a reaction,
x must have its BoundaryCondition property set to true. For example, with a

reaction a -> x and a rate rule , set the BoundaryCondition property of
species x to true so that a differential rate term is not created from the reaction. The
amount of x is determined solely by a differential rate term from the rate rule. If the
BoundaryCondition property is set to false, you will get the following error message
such as Invalid rule variable 'x' in rate rule or reaction.

B-7

B Create a Rate Rule to Define a Differential Rate Equation

Create a Rate Rule to Define a Differential Rate Equation

Many mathematical models in the literature are described with differential rate
equations for the species. You could manually convert the equations to reactions, or
you could enter the equations as rate rules. For example, you could enter the following
differential rate equation for a species C:

dC

dt
 = v - v X

C

K + C
 - k Ci d

c

d

as a rate rule in SimBiology: C = vi - (vd*X*C)/(Kc + C) - kd*C

B-8

 Create a Rate Rule for the Rate of Change That Is Determined by Another Species

Create a Rate Rule for the Rate of Change That Is Determined by
Another Species

This example shows how to create a rate rule where a species from one reaction can
determine the rate of another reaction if it is in the second reaction rate equation.
Similarly, a species from a reaction can determine the rate of another species if it is in
the rate rule that defines that other species. Suppose you have a SimBiology model with
three species (a, b, and c), one reaction (a -> b), and two parameters (k1 and k2). The
rate equation is defined as , and rate rule is . The solution for
the species in the reaction are:

, .

Since the rate rule is dependent on the reaction, . The
solution is:

Enter the following commands to set up a SimBiology model accordingly and simulate it.

m = sbiomodel('m');

c = addcompartment(m,'comp');

s1 = addspecies(m,'a','InitialAmount',10,'InitialAmountUnits','mole');

s2 = addspecies(m,'b','InitialAmount',0,'InitialAmountUnits','mole');

s3 = addspecies(m,'c','InitialAmount',5,'InitialAmountUnits','mole');

rxn = addreaction(m,'a -> b');

kl = addkineticlaw(rxn,'MassAction');

p1 = addparameter(kl,'k1','Value',1,'ValueUnits','1/second');

rule = addrule(m,'c = k2 * a','RuleType','rate');

kl.ParameterVariableNames = 'k1';

p2 = addparameter(m,'k2','Value',1,'ValueUnits','1/second');

[t,sd,species] = sbiosimulate(m);

plot(t,sd);

legend(species);

xlabel('Time');

ylabel('Species Amount');

B-9

B Create a Rate Rule for the Rate of Change That Is Determined by Another Species

B-10

C

Models Used in Examples

C Minimal Cascade Model for a Mitotic Oscillator

Minimal Cascade Model for a Mitotic Oscillator
Albert Goldbeter modified a model with enzyme cascades [Goldbeter and Koshland 1981]
to fit cell cycle data from studies with embryonic cells [Goldbeter 1991]. He used this
model to demonstrate thresholds with enzyme cascades and periodic behavior caused by
negative feedback.

There are two SimBiology model variations using Goldbeter's model. The first model uses
the differential rate equations directly from Goldbeter's paper. The second model is built
with reactions using Henri-Michaelis-Menten kinetics.

In this section...

“Goldbeter Model” on page C-2
“SimBiology Model with Rate Rules” on page C-5
“SimBiology Model with Reactions” on page C-6
“References” on page C-16

Goldbeter Model

• “About the Goldbeter Model” on page C-2
• “Reaction Descriptions and Model Assumptions” on page C-3
• “Mathematical Model” on page C-4

About the Goldbeter Model

Albert Goldbeter created a simple cell division model from studies with embryonic
cells [Goldbeter 1991]. This model demonstrates thresholds with enzyme cascades and
periodic behavior caused by negative feedback.

There are six species in Goldbeter's minimal mitotic oscillator model [Goldbeter 1991].

• C — Cyclin. The periodic behavior of cyclin activates and deactivates an enzyme
cascade.

• M+, M — Inactive (phosphorylated) and active forms of cdc2 kinase. Kinases catalyze
the addition of phosphate groups onto amino acid residues.

• X+, X — Inactive and active (phosphorylated) forms of a cyclin protease. Proteases
degrade proteins by breaking peptide bonds.

The reactions are labeled r1 to r7 on the following diagram.

C-2

 Minimal Cascade Model for a Mitotic Oscillator

This model shows:

• How thresholds with cdc2 kinase activation (M+ -> M) and protease activation (X+ -
> X) can occur as the result of covalent modification (for example, phosphorylation or
dephosphorylation), but without the need for positive feedback.

• How periodic behavior with cdc2 kinase activation can occur with negative feedback
and the time delay associated with activation/deactivation enzyme cascades.

Reaction Descriptions and Model Assumptions

The following list describes each of the reactions in Goldbeter's minimal mitotic oscillator
with some of the simplifying assumptions. For a more detailed explanation of the model,
see [Goldbeter 1991].

• Cyclin (C) is synthesized at a constant rate (r1) and degraded at a constant rate (r2).
• Cyclin (C) does not complex with cdc2 kinase (M).
• Cyclin (C) activates cdc2 kinase (M+ -> M) by increasing the velocity of the

phosphatase that activates the kinase. Inactive cdc2 kinase (M+) is activated by
removing inhibiting phosphate groups (r4).

• The amount of deactivating kinase (not modeled) for the cdc2 kinase (M) is constant.
Active cdc2 kinase (M) is deactivated by adding inhibiting phosphate group (r5).

• The activation of cyclin protease (X+ -> X) by the active cdc2 kinase (M) is direct
without other intervening cascades. Cyclin protease (X) is activated by adding
phosphate groups (r6).

C-3

C Minimal Cascade Model for a Mitotic Oscillator

• The amount of deactivating phosphatase (not modeled) for the cyclin protease (X)
is constant. Active cyclin protease (X) is deactivated by removing the activating
phosphate groups (r7).

• The three species of interest are cyclin (C), active dephosphorylated cdc2 kinase (M),
and active phosphorylated protease (X). The total amounts of (M + M+) and (X + X+)
are constant.

Mathematical Model

Goldbeter's minimal mitotic oscillator model is defined with three differential rate
equations and two algebraic equations that define changing parameters in the rate
equations.
Differential Rate Equation 1, Cyclin (C)

The following differential rate equation is from [Goldbeter 1991] for cyclin (C).

dC

dt
v v X

C

K C
k Ci d

d

d= -

+

-

Differential Rate Equation 2, Kinase (M)

The following differential rate equation is for cdc2 kinase (M). Notice that (1 - M) is the
amount of inactive (phosphorylated) cdc2 kinase (M+).

dM

dt
V

M

K M
V

M

K M
=

-

+ -

-

+
1

1
2

2

1

1

()

()

V
VM C

K Cc

1
1

=

+

[]

[]

Differential Rate Equation 3, Protease (X)

Differential rate equations for cyclin protease (X). Notice that (1 - X) is the amount of
inactive (unphosphorylated) cyclin protease (X+).

dX

dt
V

X

K X
V

X

K X
=

-

+ -

-

+
3

3
4

4

1

1

()

()

V VM M3 3= []

C-4

 Minimal Cascade Model for a Mitotic Oscillator

SimBiology Model with Rate Rules

• “SimBiology Model with Rules” on page C-5
• “SimBiology Simulation with Rules” on page C-6

SimBiology Model with Rules

In the literature, many biological models are defined using differential rate and algebraic
equations. With SimBiology software, you can enter the equations directly as SBML
rules. The example in this section uses Goldbeter's mitotic oscillator to illustrate this
point.

Writing differential rate equations in an unambiguous format that a software program
can understand is a fairly simple process.

• Use an asterisk to indicate multiplication. For example, k[a] is written k*a.
• Remove square brackets that indicate concentration from around species. The units

associated with the species will indicate concentration (moles/liter) or amount
(moles, molecules).

SimBiology software uses square brackets around species and parameter name to
allow names that are not valid MATLAB variable names. For example, you could
have a species named glucose-6-phosphate dehydrogenase but you need to add
brackets around the name in reaction rate and rule equations.

• Use parentheses to clarify the order of evaluation for mathematical operations. For
example, do not write a Henri-Michaelis-Menten rate as Vm*C/Kd + C, because Vm*C
is divided by Kd before adding C, and then C is added to the result.

The following equation is the rate rule for “Differential Rate Equation 1, Cyclin (C)” on
page C-4:

dC/dt = vi - (vd*X*C)/(Kd + C) - kd*C

The following equations are the rate and repeatedAssignment rules for “Differential
Rate Equation 2, Kinase (M)” on page C-4:

dM/dt = (V1*Mplus)/(K1 + Mplus) - (V2*M)/(K2 + M)

V1 = (VM1*C)/(Kc + C)

Mplus = Mt - M

The following equations are the rate and repeatedAssignment rules for “Differential
Rate Equation 3, Protease (X)” on page C-4:

C-5

C Minimal Cascade Model for a Mitotic Oscillator

dX/dt = (V3*Xplus)/(K3 + Xplus) - (V4*X)/(K4 + X)

V3 = VM3*M

Xplus = Xt - X

Rules

The active (M) and inactive (Mplus) forms of the kinase are assumed to be part of
a conserved cycle with the total concentration (Mt) remaining constant during the
simulation. You need only one differential rate equation with a mass balance equation to
define the amounts of both species. Similarly, the active (X) and inactive (Xplus) forms of
the protease are part of a second conserved cycle.

SimBiology Simulation with Rules

This is a simulation of Goldbeter's minimal mitotic oscillator using differential rate and
algebraic equations. Simulate with the sundials solver and plot species C, M, and X. For
a description of the model, see “SimBiology Model with Rules” on page C-5.

SimBiology Model with Reactions

• “Converting Differential Rate Equations to Reactions” on page C-7
• “Calculating Initial Values for Reactions” on page C-9

C-6

 Minimal Cascade Model for a Mitotic Oscillator

• “SimBiology Simulation with Reactions” on page C-15

Converting Differential Rate Equations to Reactions

In the literature, many models are defined with differential rate equations. With
SimBiology software, creating the differential equations from reactions is unnecessary;
you can enter the reactions and let the software calculate the equations.

Some models are defined with differential rate equations, and you might need the
reactions to be compatible with your model. Two rules you can use to convert differential
rate equations to reactions are:

• For a positive term — The species described by the equation is placed on the right
as a product, and the species in the term are placed on the left as reactants.

• For a negative term — The species described by the equation is placed on the left as
a product, and the species in the term are also placed on the left as reactants.

You need to determine the products using additional information, for example, a
reaction diagram, a description of the model, or an understanding of a reaction. If a
reaction is catalyzed by a kinase, then you can conclude that the product has one or
more additional phosphate groups.

A simple first-order reaction has differential rate equation dR/dt = +kr[P] - kf[R].
The negative term implies that the reaction is R -> ? with an unknown product. The
positive term identifies the product and completes the reaction, R <-> P.
Reactions R1 to R3 from Equation E1

The differential rate equation 1 is repeated here for comparison with the reactions. See
“Differential Rate Equation 1, Cyclin (C)” on page C-4.

dC

dt
v v X

C

K C
k Ci d

d

d= -

+

-

The reaction and reaction rate equations from the differential rate equation E1 are given
below:

r1 reaction: null -> C

 reaction rate: vi

r2 reaction: C -> null

 reaction rate: kd*C

C-7

C Minimal Cascade Model for a Mitotic Oscillator

r3 reaction: C -> null

 reaction rate: (vd*X*C)/(Kd + C)

Reactions R4 and R5 from Equation E2

The differential rate equation 2 and algebraic equation 2 are repeated here for
comparison with the reactions. See “Differential Rate Equation 2, Kinase (M)” on page
C-4.

dM

dt
V

M

K M
V

M

K M
=

-

+ -

-

+
1

1
2

2

1

1

()

()

V
VM C

K Cc

1
1

=

+

[]

[]

The reaction and reaction rate equations from the differential rate equation E2 are given
below:

r4 reaction: Mplus -> M

 reaction rate: V1*Mplus/(K1 + Mplus)

 repeatedAssignment rule: V1 = VM1*C/(Kc + C)

r5 reaction: M -> Mplus

 reaction rate: V2*M/(K2 + M)

Reactions R6 and R7 from Equation E3

The differential rate equation for equation 3 and algebraic equation 3 is repeated here for
comparison with the reactions.

dX

dt
V

X

K X
V

X

K X
=

-

+ -

-

+
3

3
4

4

1

1

()

()

V3 = VM3*[M]

The reaction and reaction rate equations from the differential rate equation E3 are given
below:

r6 reaction: Xplus -> X

 reaction rate: V3*Xplus]/(K3 + Xplus)

 repeatedAssignment rule: V3 = VM3*M

r7 reaction: X -> Xplus

 reaction rate: V4*X/(K4 + X)

C-8

 Minimal Cascade Model for a Mitotic Oscillator

Calculating Initial Values for Reactions

After you converted the differential rate equations to the reactions and reaction rate
equations, you can start to fill in initial values for the species (reactants and products)
and parameters.

The initial values for parameters and amounts for species are listed with four different
units in the same dimension:

• A — Original units in the Goldbeter 1991 paper.
• B — Units of concentration with time converted to second. When converting a to b,

use 1 minute = 60 second for parameters.

X uM

minute
 x

1e-6 mole/liter

1 uM
 x

1 minute

60 second
 =

Y mole

liter*second

• C — Units of amount as moles. When converting concentration to moles, use a cell
volume of 1e-12 liter and assume that volume does not change.

Y mole

liter*second
 x

1e-12 liter
 =

Z mole

second

• D — Units of amount as molecules. When converting amount as moles to molecules,
use 6.022e23 molecules = 1 mole.

Z mole

second
 x

6.022e23 molecule

1 mole
 =

N molecules

second

With dimensional analysis on and unit conversion off, select all of the units for one letter.
For example, select all of the As. If dimensional analysis and unit conversion are on, you
can mix and match letters and get the same answer.
Reaction 1 Cyclin Synthesis

R1 Value Units

reaction null -> C ---- ----
reaction rate vi ---- A. uM/minute
 ---- B. mole/(liter*second)
 ---- C. mole/second

C-9

C Minimal Cascade Model for a Mitotic Oscillator

R1 Value Units

 ---- D. molecule/second
parameters vi 0.025 A. uM/minute
 4.167e-10 B. mole/(liter*second)
 4.167e-22 C. mole/second
 205 D. molecule/second
species C 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 2 Cyclin Undifferentiated Degradation

R2 Value Units

reaction C -> null ---- ----
reaction rate kd*C ---- A. uM/minute
 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
parameters kd 0.010 A. 1/minute
 1.6667e-4 B, C, D. 1/second
species C 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 3 Cyclin Protease Degradation

R3 Value Units

reaction C -> null ---- ----
reaction rate (vd*X*C)/(Kd + C) ---- A. uM/minute
 ---- B. mole/(liter*second)

C-10

 Minimal Cascade Model for a Mitotic Oscillator

R3 Value Units

 ---- C. mole/second
 ---- D. molecule/second
parameter vd 0.25 A. 1/minute
 0.0042 B, C, D. 1/second
parameter Kd 0.02 A. uM
 2.0e-8 B. mole/liter
 2.0e-020 C. mole
 12044 D. molecule
species C (substrate) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule
species X (enzyme) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 4 Cdc2 Kinase Activation

R4 Value Units

reaction Mplus -> M ---- ----
reaction rate (V1*Mplus)/(K1 +

Mplus)

---- A. uM/minute

 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
repeatedAssignment

rule
V1 = (VM1*C)/(Kc + C) ----

parameter V1 (variable by rule) 0.00 A. uM/minute

B. mole/(liter*second)

C-11

C Minimal Cascade Model for a Mitotic Oscillator

R4 Value Units
C. mole/second

D. molecule/second
parameter VM1 3.0 A. uM/minute
 5.0e-8 B. mole/(liter*second)
 5.0000e-020 C. mole/second
 30110 D. molecule/second
parameter Kc 0.5 A. uM
 5.0000e-7 B. mole/liter
 5.0e-19 C. mole
 3.011e+5 D. molecule
parameter K1 0.005 A. uM
 5e-9 B. mole/liter
 5e-21 C. mole
 3.011e+3 D. molecule
species Mplus (inactive substrate) 0.99 A. uM
 9.9e-7 B. mole/liter
 9.9e-19 C. mole
 5.962e+5 D. molecule
species M (active product) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule
species C 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 5 Cdc2 Kinase Deactivation

C-12

 Minimal Cascade Model for a Mitotic Oscillator

R5 Value Units

reaction M -> M_plus ---- ----
reaction rate (V2*M)/(K2 + M) ---- A. uM/minute
 ---- B. (mole/liter-second)
 ---- C. mole/second
 ---- D. molecule/second
parameter V2 1.5 A. uM/minute
 2.5000e-008 B. mole/liter-second
 2.5000e-020 C. mole/second
 15055 D. molecule/second
parameter K2 0.005 A. uM
 5.0000e-009 B. mole/liter
 5.0000e-021 C. mole
 3011 D. molecule
 1.0e-20 C. mole
species Mplus (inactive) 0.99 A. uM
 9.9e-7 B. mole/liter
 9.9e-19 C. mole
 5.962e+5 D. molecule
species M (active) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 6 Protease Activation

R6 Value Units

reaction Xplus -> X ---- ----
reaction rate (V3*Xplus)/(K3 + Xplus) ---- A. uM/minute
 ---- B. mole/(liter*second)

C-13

C Minimal Cascade Model for a Mitotic Oscillator

R6 Value Units

 ---- C. mole/second
 ---- D. molecule/second
repeatedAssignment

rule
V3 = VM3*M ----

parameter V3 (variable by rule) A. uM/minute

B. mole/liter-second

C. mole/second

D. molecule/second
parameter VM3 1.0 A. 1/minute
 0.0167 B, C, D. 1/second
parameter K3 0.005 A. uM
 5e-9 B. mole/liter
 5e-21 C. mole
 3.011e+3 D. molecule
species Xplus (inactive substrate) 0.99 A. uM
 9.9e-7 B. mole/liter
 9.9e-19 C. mole
 5.962e+5 D. molecule
species X (active product) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule
species M (enzyme) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 7 Protease Deactivation

C-14

 Minimal Cascade Model for a Mitotic Oscillator

R7 Value Units

reaction X -> X_plus ---- ----
reaction rate (V4*X)/(K4 + X) ---- A. uM/minute
 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
parameter V4 0.5 A. uM/minute
 8.3333e-009 B. mole/(liter*second)
 8.3333e-021 C. mole/second
 5.0183e+003 D. molecule/second
parameter K4 0.005 A. uM
 5e-9 B. mole/liter
 5e-21 C. mole
 3011 D. molecule
species Xplus (inactive) 0.99 A. uM
 9.9e-7 B. mole/liter
 9.9e-19 C. mole
 5.962e+5 D. molecule
species X (active) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

SimBiology Simulation with Reactions

This is a simulation of Goldbeter's minimal mitotic oscillator with rate and algebraic
equations. Simulate with the sundials solver and plot species C, M, and X. For a
description of the model, see “SimBiology Model with Reactions” on page C-6.

C-15

C Minimal Cascade Model for a Mitotic Oscillator

References

[1] Goldbeter A. (1991), “A minimal cascade model for the mitotic oscillator involving
cyclin and cdc2 kinase,” Proceedings of the National Academy of Sciences USA,
88:9107-9111.

[2] Goldbeter A., Koshland D. (1981), “An amplified sensitivity arising from covalent
modification in biological systems,” Proceedings of the National Academy of
Sciences USA, 78:6840-6844.

[3] Goldbeter A., Koshland D. (1984), “Ultrasensitivity in biochemical systems controlled
by covalent modification,” The Journal of Biological Chemistry, 259:14441-14447.

[4] Goldbeter A., home page on the Web, http://www.ulb.ac.be/sciences/utc/GOLDBETER/
agoldbet.html.

[5] Murray A.W., Kirschner M.W. (1989), “Cyclin synthesis drives the early embryonic
cell cycle,” Nature, 339:275-280.

C-16

 Model of the Yeast Heterotrimeric G Protein Cycle

Model of the Yeast Heterotrimeric G Protein Cycle

In this section...

“Background on G Protein Cycles” on page C-17
“Modeling a G Protein Cycle” on page C-18
“References” on page C-21

Background on G Protein Cycles

• “G Proteins” on page C-17
• “G Proteins and Pheromone Response” on page C-18

G Proteins

Cells rely on signal transduction systems to communicate with each other and to
regulate cellular processes. G proteins are GTP-binding proteins that are involved in the
regulation of many cellular processes. There are two known classes of G proteins: the
monomeric G proteins (one GTPase), and the heterotrimeric G proteins (three different
monomers). The G proteins usually facilitate a step requiring energy. This energy is
supplied by the hydrolysis of GTP by a GTPase activating protein (GAP). The exchange of
GDP for GTP is catalyzed by a guanine nucleotide releasing protein (GNRP) [Alberts et
al. 1994].

Gprotein GTP Gprotein GDP
GAP

GNRP
+ æ Ææææ

¨ ææææ +

G protein-coupled receptors (GPCRs) are the targets of many pharmaceutical agents.
Some estimates suggest that 40 to 50% of currently marketed drugs target GPCRs and
that 40% of current drug discovery focus is on GPCR targets. Some examples include
those for reducing stomach acid (ranitidine which targets histamine H2 receptor),
migraine (sumatriptan, which targets a serotonin receptor subtype), schizophrenia
(olanzapine, which targets serotonin and dopamine receptors), allergies (desloratadine,
which targets histamine receptors). One approach in pharmaceutical research is to model
signaling pathways to analyze and predict both downstream effects and effects in related
pathways. This tutorial examines model building and analysis of the G protein cycle in
the yeast pheromone response pathway using the SimBiology desktop.

C-17

C Model of the Yeast Heterotrimeric G Protein Cycle

G Proteins and Pheromone Response

In the yeast Saccharomyces cerevisiae, G protein signaling in pheromone response is
a well characterized signal transduction pathway. The pheromone secreted by alpha
cells activates the G protein-coupled α-factor receptor (Ste2p) in a cells which results
in a variety of cell responses including cell-cycle arrest and synthesis of new proteins.
The authors of the study performed a quantitative analysis of this cycle, compared the
regulation of G protein activation in wild-type yeast haploid a cells with cells containing
mutations that confer supersensitivity to α-factor. They analyzed the data in the context
of cell-cycle arrest and pheromone-induced transcriptional activation and developed a
mathematical model of the G protein cycle that they used to estimate rates of activation
and deactivation of active G protein in the cell.

Modeling a G Protein Cycle

• “Reactions Overview” on page C-18
• “Assumptions, Experimental Data, and Units in the G Protein Model” on page

C-20

Reactions Overview

Systems biologists represent biological pathways and processes as reactions with reaction
rates, and treat the components of these pathways as individual species.

The G protein cycle in the yeast pheromone-response pathway can be condensed into
a set of biochemical reactions. These reactions are complex formation, transformation,
or disassociation reactions that Yi and colleagues [Yi et al. 2003] use to simplify and
describe the system. In this example, α-factor, α-factor receptor, and the G protein
subunits are all treated as species participating in reactions. The system can be
graphically represented as follows.

C-18

 Model of the Yeast Heterotrimeric G Protein Cycle

The following table shows you the reactions used to model the G protein cycle and
the corresponding rate constants (rate parameters) for each reaction. For reversible
reactions, the forward rate parameter is listed first.

No. Name Reaction Rate Parameters

1 Receptor-ligand interaction L + R <-> RL kRL, kRLm
2 Heterotrimeric G protein

formation
Gd + Gbg -> G kG1

3 G protein activation RL + G -> Ga + Gbg + RL kGa

4 Receptor synthesis and
degradation

R <-> null kRdo, kRs

5 Receptor-ligand degradation RL -> null kRD1

6 G protein inactivation Ga -> Gd kGd

C-19

C Model of the Yeast Heterotrimeric G Protein Cycle

Note that in reaction 3 (G protein activation), RL appears on both sides of the reaction.
This is because RL is treated as a modifier or catalyst, and the model assumes that there
is no synthesis or consumption of RL in this reaction.

The authors use a set of ordinary differential equations (ODEs) to describe the system.
In the software, you can represent the biological pathway as a system of biochemical
reactions and the software creates the ODEs for you. Alternatively, if you have a set of
ODEs that describe your system you can enter these as rate rules. For an example of
modeling using rate rules, see “SimBiology Model with Rate Rules” on page C-5.

Assumptions, Experimental Data, and Units in the G Protein Model

The authors have obtained experimental data either through their own measurements
or through published literature. As with any other model, the G protein cycle model
simplifies the biological process while also trying to reconcile the experimental data.
Consider these points:

• Reaction 2 — Binding and formation of the heterotrimeric G protein complex is
treated as a single-step reaction.

• Reaction 3 — Activation of G protein is modeled as a single-step. Guanine nucleotide
exchange factors (GEFs) are not modeled.

• Reactions 3 and 6 — The parameters for the rate of G protein activation and
deactivation (kGa and kGd) have been estimated based on the dose response curves
in the reference paper. The SimBiology model being built in this tutorial directly uses
those values.

• Reactions 4 and 5 — Receptor synthesis and degradation are handled purely as two
simple reaction steps.

• Reaction 6 — Deactivation of G protein by the regulator of G protein signaling (RGS)
protein Sst2p is modeled as a single step. Sst2p is not modeled.

The reaction is modeled with an estimated reaction rate of 0.11 s-1) in the Sst2p
containing wild-type strain. The uncatalyzed reaction rate is estimated to be 0.004
s
-1 in a strain with a deletion of SST2 (sst2Δ, mutant strain).

• Free GDP, GTP, and Pi are not included in the model.

This tutorial shows you how to plot the experimental data over the simulation plot of
the active G protein fraction. You can estimate the values of the experimental data
of interest for this example from the coordinates of the plots found in Figure 5 of the
reference paper [Yi et al. 2003]. The following values were obtained by comparing the
coordinates of the standards with those of the unknowns in the figure.

C-20

 Model of the Yeast Heterotrimeric G Protein Cycle

Time Fraction of Active Ga (Experimental)

0 0.00
10 0.35
30 0.40
60 0.36
110 0.39
210 0.33
300 0.24
450 0.17
600 0.20

Note: The SimBiology Dimensional Analysis feature is not used in this tutorial. For
this tutorial, the values of all species are converted to have the unit molecule, and
all rate parameters are converted to have either the unit 1/second or the units 1/
(molecule*second), depending on whether the reaction is first or second order. You
should leave the InitialAmountUnits box for species and the ValueUnits box for rate
parameters empty for the models in this tutorial.

References

[1] Tau-Mu Yi, Hiroaki Kitano, and Melvin I. Simon. A quantitative characterization of
the yeast heterotrimeric G protein cycle. PNAS (2003) vol. 100, 10764-10769.

[2] Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. Molecular
Biology of the Cell, 3rd edition, Garland Publishing, 1994.

Related Examples
• “Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast

Heterotrimeric G Protein Cycle”

C-21

C Model of M-Phase Control in Xenopus Oocyte Extracts

Model of M-Phase Control in Xenopus Oocyte Extracts

John Tyson's Computational Cell Biology Lab created a mathematical model for M-phase
control in Xenopus oocyte (frog egg) extracts [Marlovits et al. 1998]. The M-phase control
model shows principles by which you can apply phosphorylation and regulatory loops in
your own models. Publications typically list systems of ordinary differential equations
(ODEs) that represent a model system. This example shows you how to interpret these
ODEs in the form of reaction pathways that are easier to represent and visualize in
SimBiology software.

The model is centered around M-phase promoting factor (MPF). There are two positive
feedback loops where MPF increases its synthesis and a negative feedback loop where
MPF decreases its amount by increasing its degradation.

In this section...

“M-Phase Control Model” on page C-22
“M-Phase Control Equations” on page C-24
“SimBiology Model with Rate and Algebraic Rules” on page C-32
“SimBiology Model with Reactions and Algebraic Rules” on page C-38
“References” on page C-55

M-Phase Control Model

• “Synthesis Reactions” on page C-22
• “Regulation Reactions with Active MPF” on page C-23

Synthesis Reactions

Cyclin B (CycB) dimerizes with Cdc2 kinase (Cdc2) to form M-phase promoting factor
(MPF).

C-22

 Model of M-Phase Control in Xenopus Oocyte Extracts

Regulation Reactions with Active MPF

Positive feedback loops with M-phase promoting factor (MPF) activate the Cdc25
phosphatase and deactivate the Wee1 kinase. A negative feedback loop with MPF
activates anaphase-promoting complex (APC) that regulates the degradation of the
Cyclin B subunit.

C-23

C Model of M-Phase Control in Xenopus Oocyte Extracts

M-Phase Control Equations

• “About the Rate Equations in This Example” on page C-25
• “Converting Differential Equations to Reactions” on page C-25
• “Equation 1, Cyclin B” on page C-26
• “Equation 2, M-Phase Promoting Factor” on page C-26
• “Equation 3, Inhibited M-Phase Promoting Factor” on page C-27
• “Equation 4, Inhibited and Activated M-Phase Promoting Factor” on page C-28
• “Equation 5, Activated M-Phase Promoting Factor” on page C-28
• “Equation 11, Cell Division Control 25” on page C-29

C-24

 Model of M-Phase Control in Xenopus Oocyte Extracts

• “Equation 12, Wee1 Activation/Deactivation” on page C-30
• “Equation 13, Intermediate Enzyme Activation/Deactivation” on page C-30
• “Equation 14, APC Activation/Deactivation” on page C-31
• “Equation 17, Rate Parameter K2” on page C-31
• “Equation 18, Rate Parameter Kcdc25” on page C-31
• “Equation 19, Rate Parameter Kwee1” on page C-32

About the Rate Equations in This Example

Models in systems biology are commonly described in the literature with differential rate
equations. However, SimBiology software defines a model using reactions. This section
shows you how to convert models published in the literature to a SimBiology format.
The equation numbers match the published paper for this model [Marlovits et al. 1998].
Equations that are missing in the sequence involve the Cdk inhibitor (CKI) protein,
which is not currently modeled in the SimBiology version.

Converting Differential Equations to Reactions

The rules for writing reaction and reaction rate equations from differential rate
equations include not only the equations but also an understanding of the reactions. dx/
dt refers to the species the differential rate equation is defining. kinetics refers to the
species in the reaction rate.

• Positive terms: Rate species are placed on right side of the reactions; reaction rate
equation species are placed on the left.

kinetics
dx

dt
Æ

• Negative terms: Rate species are placed on the left side of the reaction because the
species are being used up in some way; reaction rate equation species are also placed
on left. You need to deduce the products from additional information about the model.

kinetics or (
dx

dt
) products?Æ

The following table will help you deduce the products for a reaction. In this example, by
convention, phosphate groups on the right side of a species name are activating while
phosphate groups on left are inhibiting.

C-25

C Model of M-Phase Control in Xenopus Oocyte Extracts

Enzyme Description Reaction

wee1 Kinase, add inhibiting phosphate
group

MPF —> P-MPF

cdc25 Phosphatase, remove inhibiting
phosphate group

P-MPF —> MPF + P

kcak Kinase, add activating phosphate
group

MPF —> MPFp

kpp Phosphatase, remove activating
phosphate group

MPF-P —> MPF + P

MPF Kinase, add activating or inhibiting
phosphate group

Wee1/Cdc25/IE —> X-P or P-X

ki Add inhibiting Cki Cki + MPF —> Cki:MPF
kir Remove inhibiting Cki Cki:MPF —> Cki + MPF

Equation 1, Cyclin B

Differential rate equation for cyclin B [Marlovits et al. 1998].

d

dt

[CycB]
k1 -k2[CycB] -k3[Cdc2][CycB]= +

Rate rule using SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Rule 1 [CycB] = k1 - K2*[CycB] - k3*[Cdc2]*[CycB]

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.

Reaction 1 AA -> CycB v = k1

Reaction 2 CycB -> AA v = K2*[CycB]

Reaction 3 Cdc2 + CycB -> MPF v = k3*[Cdc2]*[CycB]

Equation 2, M-Phase Promoting Factor

Differential rate equation for M-phase promoting factor (MPF) [Marlovits 1998]. Note
that the parameter name kcakr [Marlovits et al. 1998] is changed to kpp [Borisuk 1998]
in the following reaction equations. MPF is a heterodimer of cdc2 kinase and cyclin B.

C-26

 Model of M-Phase Control in Xenopus Oocyte Extracts

d

dt

[MPF]
+k3[Cdc2][CycB] -K2[MPF]

 +kpp[MPF

=

pp] -kcak[MPF]

 +Kcdc25[pMPF] -Kwee1[MPF]

 +kir[Cki:MPF] -ki[MPF][Cki]

Rate rule using SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Rule 2 MPF = kpp*MPFp - (Kwee1 + kcak + K2)*MPF + Kcdc25*pMPF + k3*Cdc2*CycB

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38. A reaction name in parentheses denotes a reaction repeated in another
differential rate equation.

(Reaction 3) Cdc2 + CycB -> MPF v = k3*[Cdc2]*[CycB]

Reaction 4 MPF -> Cdc2 + AA v = K2*[MPF]

Reaction 5 MPFp -> MPF v = kpp*[MPFp]

Reaction 6 MPF -> MPFp v = kcak*[MPF]

Reaction 7 pMPF -> MPF v = Kcdc25*[pMPF]

Reaction 8 MPF -> pMPF v = Kwee1*[MPF]

Equation 3, Inhibited M-Phase Promoting Factor

Differential rate equation for inhibited M-phase promoting factor (pMPF) [Marlovits
1998].

d

dt

[pMPF]
K2[pMPF]

 +kpp[pMPFp] -kcak[pM

= -

PPF]

 +Kwee1[MPF] -Kcdc25[pMPF]

 +kd[Cki:pMPF]

Rate rule using SimBiology format for the differential rate equation 3. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Rule 3 pMPF = Kwee1*MPF - (Kcdc25 + kcak + K2)*pMPF + kpp*pMPFp

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.

C-27

C Model of M-Phase Control in Xenopus Oocyte Extracts

Reaction 11 pMPF -> Cdc2 + AA v = K2*[pMPF]

Reaction 12 pMPFp -> pMPF v = kpp*[pMPFp]

Reaction 13 pMPF -> pMPFp v = kcak*[pMPF]

(Reaction 8) MPF -> pMPF v = Kwee1*[MPF]

(Reaction 7) pMPF -> MPF v = Kcdc25*[pMPF]

Equation 4, Inhibited and Activated M-Phase Promoting Factor

Differential rate equation for inhibited and activated M-phase promoting factor (pMPFp)
[Marlovits 1998].

d

dt

[pMPFp]
-K2[pMPFp]

 +kcak[pMPF] -kpp

=

[[pMPFp]

 +Kwee1[MPFp] -Kcdc25[pMPFp]

 +kd[Cki:pMPFp]

Rate rule using SimBiology format for the differential rate equation. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Rule 4 pMPFp = Kwee1*MPFp - (kpp + Kcdc25 + K2)*pMPFp + kcak*pMPF

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.

Reaction 15 pMPFp -> Cdc2 + AA v = K2*[pMPFp]

(Reaction 13) pMPF -> pMPFp v = kcak*[pMPF]

(Reaction 12) pMPFp -> pMPF v = kpp*[pMPFp]

Reaction 16 MPFp -> pMPFp v = Kwee1*[MPFp]

Reaction 17 pMPFp -> MPFp v = Kcdc25*[pMPFp]

Equation 5, Activated M-Phase Promoting Factor

Differential rate equation for activated M-phase promoting factor (MPFp) [Marlovits
1998].

C-28

 Model of M-Phase Control in Xenopus Oocyte Extracts

d

dt

[MPFp]
= -K2[MPFp]

 +kcak[MPF] -kpp[MPFp]]

 +Kcdc25[pMPFp] -Kwee1[MPFp]

 +kir[CKI:MPFp] -ki[CKI][MPFp]

Rate rule using SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Rule 5 MPFp = kcak*MPF - (kpp + Kwee1 + K2)*MPFp + Kcdc25*pMPFp

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.

Reaction 19 MPFp -> MPF + AA v = K2*[MPFp]

(Reaction 6) MPF -> MPFp v = kcak*[MPF]

(Reaction 5) MPFp -> MPF v = kpp*[MPFp]

(Reaction 17) pMPFp -> MPFp v = Kcdc25*[pMPFp]

(Reaction 16) MPFp -> pMPFp v = Kwee1*[MPFp]

Equation 11, Cell Division Control 25

Differential rate equation for activating and deactivating Cdc25 [Marlovits 1998].

d

dt

[Cdc25p]
= +

k25[MPFp][Cdc25]

Km25+[Cdc25]
 -

k25r[Cdc25p]

Km225r+[Cdc25p]

Rate rule in SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32. Note
that since there isn't a rate rule for Cdc25, its amount is written as (TotalCdc25 -
Cdc25p).

Rule 11 Cdc25p = (k25*MPFp*(TotalCdc25 - Cdc25p))/(Km25 + (TotalCdc25 - Cdc25p)) - (k25r*PPase*Cdc25p)/(Km25r + Cdc25p)

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.

C-29

C Model of M-Phase Control in Xenopus Oocyte Extracts

Reaction 36 Cdc25 -> Cdc25p, v = k25*[MPFp]*[Cdc25]/(Km25 + [Cdc25])

Reaction 37 Cdc25p -> Cdc25, v = k25r*[Cdc25p]/(Km25r + [Cdc25p])

Equation 12, Wee1 Activation/Deactivation

Differential rate equation for activating and deactivating Wee1 kinase [Marlovits 1998].
The kinase (MPFp) phosphorylates active Wee1 (Wee1) to its inactive form (Wee1p). The
dephosphorylation of inactive Wee1 (Wee1p) is by an unknown phosphatase.

d Wee

dt

kw MPFp Wee

Kmw Wee

kwr Wee P

Kmwr Wee P

[] [][]

[]

[]

[]

1 1

1

1

1
= -

+

+

+

Rate rule in SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.
Rule 12 Wee1p = (kw*MPFp*(TotalWee1 - Wee1p))/(Kmw + (TotalWee1 - Wee1p))

 - (kwr*Wee1p)/(Kmwr + Wee1p)

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.

reaction 38 Wee1 -> Wee1p, v = (kw*[MPFp]*[Wee1])/(Kmw + [Wee1])

reaction 39 Wee1p -> Wee1, v = (kwr*[Wee1p])/(Kmwr + [Wee1p])

Equation 13, Intermediate Enzyme Activation/Deactivation

Differential rate equation for activating and deactivating the intermediate enzyme (IE)
[Marlovits 1998]. The active kinase (MPFp) phosphorylates the inactive intermediate
enzyme (IE) to its active form (IEp).

d IEp

dt

kie MPFp IE

Kmie IE

kier IEp

Kmier IEp

[] [][]

[]

[]

[]
= +

+

-

+

Rate rule in SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.
Rule 13 IEp = (kie*MPFp*(TotalIE - IEp))/(Kmie + (TotalIE - IEp))

 - (kier*IEp)/(Kmier + IEp)

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.

reaction 40 IE -> IEp, v = (kie*[MPFp]*[IE])/(Kmie + [IE])

C-30

 Model of M-Phase Control in Xenopus Oocyte Extracts

reaction 41 IEp -> IE, v = (kier*[IEp])/(Kmier + [IEp])

Equation 14, APC Activation/Deactivation

Differential rate equation for [Marlovits 1998].

d APCa

dt

kap IEP APCi

Kmap APCi

kapr APCa

Kmapr APCa

[] [][]

[]

[]

[
= +

+

-

+]]

Rate rule in SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.
Rule 14 APCa = (kap*IEp*(TotalAPC - APCa))/(Kmap + (TotalAPC - APCa))

 - (kapr*APCa)/(Kmapr + APCa)

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.

Reaction 42 APCi -> APCa, v = (kap*[IEp]*[APCi])/(Kmap + [APCi])

Reaction 43 APCa -> APCi, v = (kapr*[APCa])/(Kmapr + [APCa])

Equation 17, Rate Parameter K2

Algebraic equation to define the rate parameter K2 [Marlovits 1998]. Inactive APC
(APCi) is catalyzed by IE (intermediate enzyme) to active APC (APCa).

k2 = V ’[APC] + V ’’[APC’]2 2

Algebraic rule in SimBiology format for the algebraic equation 17. For a model using this
rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Algebraic Rule 17 V2i*(TotalAPC - APCa) + V2a*APCa - K2

Algebraic rule when simulating with reactions. For a model using this rule with
reactions, see “SimBiology Model with Reactions and Algebraic Rules” on page C-38.
V2' is renamed to V2i and V2”is renamed to V2a. APCi (APC) is the inactive form of the
enzyme while APCa (APC') is the active form. K2 is the independent variable.

Algebraic Rule 1 (V2i*APCi) + (V2a*APCa) - K2

Equation 18, Rate Parameter Kcdc25

Algebraic equation to define the rate parameter Kcdc25 [Marlovits 1998]. Inactive Cdc25
(Cdc25) is phosphorylated by MPF to active Cdc25 (Cdc25p).

C-31

C Model of M-Phase Control in Xenopus Oocyte Extracts

kcdc25 = V ’[Cdc25] + V ’’[Cdc25p]25 25

Algebraic rule in SimBiology format for the algebraic equation 18. For a model using this
rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Algebraic Rule 18 V25i*(TotalCdc25 - Cdc25p) + V25a*Cdc25p - Kcdc25

Algebraic rule when simulating with reactions. Kcdc25 is the independent variable.
For a model using this rule with reactions, see “SimBiology Model with Reactions and
Algebraic Rules” on page C-38.

Algebraic Rule 2 (V25i*Cdc25) + (V25a*Cdc25p) - Kcdc25

Equation 19, Rate Parameter Kwee1

Algebraic equation to define the rate parameter [Marlovits 1998]. Active Wee1 (Wee1) is
phosphorylated by MPF to inactive Wee1 (Wee1p).

k = V ’[Wee1p] + V ’’[Wee1]wee1 wee1 wee1

Algebraic rule in SimBiology format for rate parameter equation 19. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Algebraic Rule 19 Vwee1i*Wee1p + Vwee1a*(TotalWee1 - Wee1p) - Kwee1

Algebraic rule when simulating with reactions. Kwee1 is the independent variable.
For a model using this rule with reactions, see “SimBiology Model with Reactions and
Algebraic Rules” on page C-38.

Algebraic Rule 3 (Vwee1i*Wee1p) + (Vwee1a*Wee1) - Kwee1

SimBiology Model with Rate and Algebraic Rules

• “Overview” on page C-33
• “Writing Differential Rate Equations as Rate Rules” on page C-33
• “Species” on page C-34
• “Parameters” on page C-34
• “Rate Rule 1, Cyclin B (CycB)” on page C-35

C-32

 Model of M-Phase Control in Xenopus Oocyte Extracts

• “Rate Rule 2, M-Phase Promoting Factor (MPF)” on page C-36
• “Rate Rule 3, Inhibited M-Phase Promoting Factor (pMPF)” on page C-36
• “Rate Rule 4, Activated but Inhibited M-Phase Promoting Factor (pMPFp)” on page

C-36
• “Rate Rule 5, Activated M-Phase Promoting Factor (MPFp)” on page C-36
• “Rate Rule 11, Activated Cdc25 (Cdc25p)” on page C-37
• “Rate Rule 12, Inhibited Wee1 (Wee1p)” on page C-37
• “Rate Rule 13, Activated Intermediate Enzyme (IEp)” on page C-37
• “Rate Rule 14, Activated APC (APCa)” on page C-37
• “Algebraic Rule 17, Rate Parameter K2” on page C-37
• “Algebraic Rule 18, Rate Parameter Kcdc25” on page C-38
• “Algebraic Rule 19, Rate Parameter Kwee1” on page C-38

Overview

There is one rate rule for each equation defining a species and one algebraic rule for
each variable parameter in the M-phase control model [Marlovits 1998]. For a list and
description of the equations, see “M-Phase Control Equations” on page C-24.

A basic model includes rate rules 1 to 5 and 11 to 14 with algebraic rules 17, 18, and 19.

Writing Differential Rate Equations as Rate Rules

Writing differential rate equations in an unambiguous format that a software program
can understand is a simple process when you follow the syntax rules for programming
languages.

• Use an asterisk to indicate multiplication. For example, k[A] is written k*A or
k*[A]. The brackets around the species A do not indicate concentration.

• SimBiology uses square brackets around species and parameter name to allow names
that are not valid MATLAB variable names. For example, you could have a species
named glucose-6-phosphate dehydrogenase but you need to add brackets
around the name in reaction rate and rule equations.

[glucose-6-phosphate dehydrogenase]

• Use parentheses to clarify the order of evaluation for mathematical operations.
For example, do not write Henri-Michaelis-Menten reaction rates as Vm*C/Kd +

C-33

C Model of M-Phase Control in Xenopus Oocyte Extracts

C, because Vm*C is divided by Kd before adding C to the result. Instead, write this
reaction rate as (Vm*C)/(Kd + C).

Species

The following table lists species in the model with their initial amounts. There are three
variable parameters modeled as species (K2, Kcdc25, and KWee1). You could also model
the variable parameters as parameters with the property ConstantAmount cleared.

Parameters

The following table lists parameters in the model with their initial values. The property
ConstantValue is selected for all of the parameters.

C-34

 Model of M-Phase Control in Xenopus Oocyte Extracts

Rate Rule 1, Cyclin B (CycB)

The rate rule is from “Equation 1, Cyclin B” on page C-26.

 rate rule: CycB = k1 - K2*CycB - k3*Cdc2*CycB

 species: CycB = 0 nM

C-35

C Model of M-Phase Control in Xenopus Oocyte Extracts

 Cdc2 = 100 nM, [x]constant

parameters: k1 = 1 nM/minute

 K2 = 0 1/minute, []constant

 k3 = 0.005 1/(nM*minute)

K2 is a variable rate parameter whose value is defined by an algebraic rule. See
“Algebraic Rule 17, Rate Parameter K2” on page C-37. Its value varies from 0.005 to
0.25 1/minute.

Rate Rule 2, M-Phase Promoting Factor (MPF)

The rate rule is from “Equation 2, M-Phase Promoting Factor” on page C-26.
 rate rule: MPF = kpp*MPFp - (Kwee1 + kcak + K2)*MPF + Kcdc25*pMPF

 + k3*Cdc2*CycB

 species: MPF = 0 nM

 MPFp = 0 nM

 pMPF = 0 nM

parameters: kpp = 0.004 1/minute

 kcak = 0.64 1/minute

 k3 = 0.005 1/(nM*minute)

 K2 = 0 1/minute

 Kcdc25 = 0 1/minute

 Kwee1 = 0 1/minute

K2, Kcdc25, and Kwee1 are variable rate parameters whose values are defined by
algebraic rules. See “Algebraic Rule 17, Rate Parameter K2” on page C-37, “Algebraic
Rule 18, Rate Parameter Kcdc25” on page C-38, and “Algebraic Rule 19, Rate
Parameter Kwee1” on page C-38.

Rate Rule 3, Inhibited M-Phase Promoting Factor (pMPF)

The rate rule is from “Equation 3, Inhibited M-Phase Promoting Factor” on page
C-27.

rate rule: pMPF = Kwee1*MPF - (Kcdc25 + kcak + K2)*pMPF + kpp*pMPFp

Rate Rule 4, Activated but Inhibited M-Phase Promoting Factor (pMPFp)

The rate rule is from “Equation 4, Inhibited and Activated M-Phase Promoting Factor”
on page C-28.

rate rule: pMPFp = Kwee1*MPFp - (kpp + Kcdc25 + K2)*pMPFp + kcak*pMPF

Rate Rule 5, Activated M-Phase Promoting Factor (MPFp)

The rate rule is from “Equation 5, Activated M-Phase Promoting Factor” on page
C-28.

C-36

 Model of M-Phase Control in Xenopus Oocyte Extracts

rate rule: MPFp = kcak*MPF - (kpp + Kwee1 + K2)*MPFp + Kcdc25*pMPFp

Rate Rule 11, Activated Cdc25 (Cdc25p)

The rate rule is from “Equation 11, Cell Division Control 25” on page C-29.

rate rule: Cdc25p = (k25*MPFp*(TotalCdc25 - Cdc25p))/(Km25 + (TotalCdc25 - Cdc25p))

 - (k25r*PPase*Cdc25p)/(Km25r + Cdc25p)

Rate Rule 12, Inhibited Wee1 (Wee1p)

The rate rule is from “Equation 12, Wee1 Activation/Deactivation” on page C-30.

rate rule: Wee1p = (kw*MPFp*(TotalWee1 - Wee1p))/(Kmw + (TotalWee1 - Wee1p))

 - (kwr*PPase*Wee1p)/(Kmwr + Wee1p)

Rate Rule 13, Activated Intermediate Enzyme (IEp)

The rate rule is from “Equation 13, Intermediate Enzyme Activation/Deactivation” on
page C-30.

rate rule: IEp = (kie*MPFp*(TotalIE - IEp))/(Kmie + (TotalIE - IEp))

 - (kier*PPase*IEp)/(Kmier + IEp)

Rate Rule 14, Activated APC (APCa)

The rate rule is from “Equation 14, APC Activation/Deactivation” on page C-31.

rate rule: APCa = (kap*IEp*(TotalAPC - APCa))/(Kmap + (TotalAPC - APCa))

 - (kapr*AntiAPC*APCa)/(Kmapr + APCa)

Algebraic Rule 17, Rate Parameter K2

K2 is a variable rate parameter whose value is determined by the amount of active and
inactive APC. The algebraic rule is from “Equation 17, Rate Parameter K2” on page
C-31.

algebraic rule: V2i*(TotalAPC - APCa) + V2a*APCa - K2

 species: APCi = 1 nM

 APCa = 0 nM

 TotalAPC = 1 nM [x]constant

 parameters: K2 = 0 or 0.25 1/minute, []constant

 V2i = 0.005 1/(nM*minute)

 V2a = 0.25 1/(nM*minute)

C-37

C Model of M-Phase Control in Xenopus Oocyte Extracts

Algebraic Rule 18, Rate Parameter Kcdc25

Kcdc25 is a variable rate parameter whose value is determined by the amount of active
and inactive Cdc25. The algebraic rule is from “Algebraic Rule 18, Rate Parameter
Kcdc25” on page C-38.

algebraic rule: V25i*(TotalCdc25 - Cdc25p) + V25a*Cdc25p - Kcdc25

Algebraic Rule 19, Rate Parameter Kwee1

Kwee1 is a variable rate parameter whose value is determined by the amount of active
and inactive Wee1. The algebraic rule is from “Equation 19, Rate Parameter Kwee1” on
page C-32.

algebraic rule: Vweei*Wee1p + Vweea*(TotalWee1 - Wee1p) - Kwee1

SimBiology Model with Reactions and Algebraic Rules

• “Overview” on page C-39
• “Reaction 1, Synthesis of Cyclin B” on page C-39
• “Reaction 2, Degradation of Cyclin B” on page C-40
• “Reaction 3, Dimerization of Cyclin B with Cdc2 Kinase” on page C-41
• “Reaction 4, Degradation of Cyclin B on MPF” on page C-42
• “Reaction 5, Deactivation of Active MPF” on page C-43
• “Reaction 6, Activation of MPF” on page C-44
• “Reaction 7, Remove Inhibiting Phosphate from Inhibited MPF” on page C-45
• “Reaction 8, Inhibition of MPF by Phosphorylation” on page C-46
• “Reaction 11, Degradation of Cyclin B on Inhibited MPF” on page C-48
• “Reaction 12, Deactivation of MPF to Inhibited MPF” on page C-48
• “Reaction 13, Activation of Inhibited MPF” on page C-48
• “Reaction 15, Degradation of Cyclin B on Active but Inhibited MPF” on page C-49
• “Reaction 16, Inhibit MPF by Phosphorylation” on page C-49
• “Reaction 17, Remove Inhibiting Phosphate from Activated MPF” on page C-49
• “Reaction 19, Degradation of Cyclin B on Activated MPF” on page C-50

C-38

 Model of M-Phase Control in Xenopus Oocyte Extracts

• “Reaction 36, Activation of Cdc25 by Activated MPF” on page C-50
• “Reaction 37, Deactivation of Cdc25” on page C-50
• “Reaction 38, Deactivation of Wee1 by Active MPF” on page C-51
• “Reaction 39, Activation of Wee1” on page C-51
• “Reaction 40, Activation of Intermediate Enzyme by Active MPF” on page C-51
• “Reaction 41, Deactivation of IE” on page C-51
• “Reaction 42, APC Activation by IEp” on page C-52
• “Reaction 43, APC Deactivation” on page C-52
• “Block Diagram of the M-Phase Control Model with Reactions” on page C-52

Overview

There can be one or more reactions for an equation defining a species and one algebraic
rule for each variable parameter in the M-phase control model [Marlovits 1998]. For a
list and description of the equations, see “M-Phase Control Equations” on page C-24.

A basic model includes reactions 1 to 8, 11 to 13, 15 to 17, 19, and 36 to 43 with algebraic
rules from equations 17, 18, and 19.

Reaction 1, Synthesis of Cyclin B

Cyclin B is synthesized at a constant rate.

 reaction: AA -> CycB

reaction rate: k1 nM/minute

 parameter: k1 = 1 nM/minute

 species: CycB = 0 nM

 AA = 100 nM [x]constant [x]boundary

Simulate reaction 1 with the sundials solver.

C-39

C Model of M-Phase Control in Xenopus Oocyte Extracts

Reaction 2, Degradation of Cyclin B

Cyclin B is degraded at the end of the M-phase.

 reaction: CycB -> AA

 reaction rate: K2*CycB nM/minute

 parameters: K2 = 0 1/minute, []constant, variable by rule

 V2i = 0.005 1/nM*minute

 V2a = 0.25 1/nM*minute

 species: CycB = 0 nM

 APCi = 1 nM

 APCa = 0 nM

 AA = 100 nM [x]constant [x]boundary

algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Initially, Cyclin B degradation is low. This implies the amount of active APC (APCa) = 0
and inactive APC (APCi) = APCtotal = 1 nM.

Test the algebraic rule by simulating reactions 1 and 2 with APCi = 0 and APCa = 1.

C-40

 Model of M-Phase Control in Xenopus Oocyte Extracts

Reaction 3, Dimerization of Cyclin B with Cdc2 Kinase

Cyclin B dimerizes with Cdc2 kinase to form M-phase promoting factor (MPF).

 reaction: Cdc2 + CycB -> MPF

reaction rate: k3*Cdc2*CycB nM/minute

 parameters: k3 = 0.005 1/(nM*minute)

 species: Cdc2 = 100 nM

 CycB = 0 nM

 MPF = 0 nM

Test the model by simulating with K2 = 0.25.

C-41

C Model of M-Phase Control in Xenopus Oocyte Extracts

Reaction 4, Degradation of Cyclin B on MPF

Cyclin B is tagged with ubiquitin groups and degrades while bound to Cdc2.

 reaction: MPF -> Cdc2 + AA

 reaction rate: K2*[MPF]

 parameters: K2 = 0 or 0.25 1/minute, variable by rule

 v2i = 0.005 1/(nM*minute)

 v2a = 0.25 1/(nM*minute)

 species: MPF = 0 nM

 APCi = 1 nM

 APCa = 0 nM

 AA = 100 nM [x]constant [x]boundary

algebraic rule: (v2i*APCi) + (v2a*APCa) - K2

Test the simulation with APCa = 1 and APCi = 0. Because the amount of APCa
(active) is high, K2 increases and the degradation starts to balance the synthesis of MPF.

C-42

 Model of M-Phase Control in Xenopus Oocyte Extracts

Reaction 5, Deactivation of Active MPF

Active MPF (MPFp) is dephosphorylated on Thr-161 by an unknown phosphatase (PP) to
inactive MPF (MPF).

 reaction: MPFp -> MPF

reaction rate: kpp*[MPFp]

 parameters: kpp = 0.004 1/minute

 species: MPFp = 0 nM

 MPF = 0 nM

kcakr = 0.004 1/minute [Marlovits 1998, p. 175], but is renamed to kpp [Borisuk
1998].

Test simulation with APCa = 1 and APCi = 0. MPF increases without reaching steady
state.

C-43

C Model of M-Phase Control in Xenopus Oocyte Extracts

Reaction 6, Activation of MPF

Inactive MPF (MPF) is phosphorylated on Thr-161 by an unknown cyclin activating
kinase (CAK).

 reaction: MPF -> MPFp

reaction rate: kcak*[MPF]

 parameters: kcak = 0.64 1/minute

 species: MPF = 0 nM

 MPFp = 0 nM

The kinase reaction that phosphorylates MPF to the active form is 160 times faster than
the phosphatase reaction that dephosphorylates active MPF.

Simulate the model with reactions 1 to 6. Notice that after adding reaction 6, most of the
product goes to active MPF (MPFp).

C-44

 Model of M-Phase Control in Xenopus Oocyte Extracts

Reaction 7, Remove Inhibiting Phosphate from Inhibited MPF

Cdc25 phosphatase removes the inhibiting phosphate groups at the threonine 14 and
tyrosine 15 residues on Cdc2 kinase.

 reaction: pMPF -> MPF

reaction rate: Kcdc25*[pMPF]

 parameters: Kcdc25 = 0.0 1/minute or 0.017 1/minute, variable by

 algebraic rule

 V25i = 0.017 1/(mM*minute)

 V25a = 0.17 1/mM*minute

 species: pMPF = 0 nM

 MPF = 0 nM

 Cdc25 = 1 nM (inactive)

 Cdc25p = 0 nM (active)

algebraic rule: (V25i*Cdc25) + (V25a*Cdc25p) - Kcdc25

Initially, all of the Cdc25 phosphatase is in the inactive form (Cdc25).

Enter the initial value for Kcdc25 as 0.0 and let the first time step calculate the value
from the rule, or enter an initial value using the rule.

C-45

C Model of M-Phase Control in Xenopus Oocyte Extracts

Initially, set ConstantAmount for Cdc25 and Cdc25p to test reactions 1 through 7.
Then after you can add the reactions to regulate the Cdc25 phosphatase by clearing the
ConstantAmount property.

Reaction 8, Inhibition of MPF by Phosphorylation

Addition of inhibiting phosphate groups by Wee1 kinase to inhibit active M-phase
promoting factor (MPF). Myt1 kinase is also involved with the phosphorylation, but its
contribution is grouped with Wee1.

 reaction: MPF -> pMPF

reaction rate: Kwee1*[MPF]

 parameters: Kwee1 = 0.0 1/minute or 0.01 1/minute, variable by

 algebraic rule

 Vwee1i = 0.01 1/(nM*minute)

 Vwee1a = 1.0 1/(nM*minute)

 species: MPF = 0 nM

 pMPF = 0 nM

 Wee1p = 1 nM (inactive)

 Wee1 = 0 nM (active)

algebraic rule: (Vwee1i*Wee1p) + (Vwee1a*Wee1) - Kwee1

The initial capitalization for the parameter Kwee1 is a convention to indicate that this
value changes during the simulation.

Test the simulation for reactions 1 through 8 with Wee1p (inactive) = 1 and Wee1
(active) = 0.

C-46

 Model of M-Phase Control in Xenopus Oocyte Extracts

Test the simulation with Wee1p (inactive) = 0 and Wee1 (active) = 1.

C-47

C Model of M-Phase Control in Xenopus Oocyte Extracts

Reaction 11, Degradation of Cyclin B on Inhibited MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged with
ubiquitin groups and degrades while bound to Cdc2.

 reaction: pMPF -> Cdc2 + AA

 reaction rate: K2*[pMPF] nM/minute

 parameters: K2 = 0 or 0.25 1/minute, variable by rule

 V2i = 0.005 1/nM*minute

 V2a = 0.25 1/nM*minute

 species: MPF = 0 nM

 APCi = 1 nM

 APCa = 0 nM

 AA = 100 nM [x]constant [x]boundary

 Cdc2 = 100 nm

algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Test the simulation with Wee1 active (Wee1 = 1) and APC active (APCi = 1).

Reaction 12, Deactivation of MPF to Inhibited MPF

Inhibited/active MPF (pMPFp) is dephosphorylated on Thr-161 by an unknown
phosphatase (PP) to inhibited MPF (pMPF). Compare reaction 12 with reaction 5.

 reaction: pMPFp -> pMPF

reaction rate: kpp*[pMPFp]

 parameters: kpp = 0.004 1/minute

 species: pMPFp = 0 nM

 pMPF = 0 nM

Reaction 13, Activation of Inhibited MPF

Inhibited MPF (pMPF) is phosphorylated on Thr-161 by an unknown cyclin-activating
kinase (CAK). Compare reaction 13 with reaction 6.

 reaction: pMPF -> pMPFp

reaction rate: kcak*[pMPF] nM/minute

 parameters: kcak = 0.64 1/minute

 species: pMPF = 0 nM

 pMPFp = 0 nM

Test the simulation with Wee1p = 1 (inactive)/ Wee1 = 0 and then test with Wee1p = 0
(inactive)/ Wee1 = 1.

C-48

 Model of M-Phase Control in Xenopus Oocyte Extracts

Reaction 15, Degradation of Cyclin B on Active but Inhibited MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged with
ubiquitin groups and degrades while bound to cdc2 kinase.

 reaction: pMPFp -> Cdc2 + AA

 reaction rate: K2*[pMPFp] nM/minute

 parameters: K2 = 0 or 0.25 1/minute, variable by rule

 v2i = 0.005 1/nM*minute

 v2a = 0.25 1/nM*minute

 species: MPF = 0 nM

 APCi = 1 nM

 APCa = 0 nM

 AA = 100 nM [x]constant [x]boundary

 Cdc2 = 100 nm

algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Reaction 16, Inhibit MPF by Phosphorylation

Addition of inhibiting phosphate groups by Wee1 kinase to inhibit active M-phase
promoting factor (MPF). Myt1 kinase is also involved with the phosphorylation, but its
contribution is grouped with Wee1.

 reaction: MPFp -> pMPFp

 reaction rate: Kwee1*[MPFp] nM/minute

 parameters: Kwee1 = 1/minute []constant, variable by rule

 Vweei = 0.01 1/nM*minute

 Vweea = 1 1/nM*minute

 species: MPFp = 0 nM

 pMPFp = 0 nM

 Wee1p = 1 nM (inactive)

 Wee1 = 0 nM (active)

algebraic rule: (Vwee1i*Wee1p) + (Vwee1a*Wee1) - Kwee1

Reaction 17, Remove Inhibiting Phosphate from Activated MPF

Remove the inhibiting phosphate group from pMPFp with cdc25 phosphatase.

 reaction: pMPFp -> MPFp

reaction rate: Kcdc25*[pMPFp]

 parameters: Kcdc25 = 0 1/minue, []constant, variable by rule

 V25i = 0.017 1/nM*minute

 V25a = 0.17 1/nM*minute

 species: pMPFp = 0 nM

C-49

C Model of M-Phase Control in Xenopus Oocyte Extracts

 MPFp = 0 nM

algebraic rule: (V25i*Cdc25) + (V25a*Cdc25p) - Kcdc25

Reaction 19, Degradation of Cyclin B on Activated MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged with
ubiquitin groups and degrades while bound to cdc2 kinase.

 reaction: MPFp -> MPF + AA

 reaction rate: K2*[MPFp] nM/minute

 parameters: K2 = 0 or 0.25 1/minute, variable by rule

 V2i = 0.005 1/nM*minute

 V2a = 0.25 1/nM*minute

 species: MPF = 0 nM

 MPFp = 0 nM

 APCi = 1 nM

 APCa = 0 nM

 AA = 100 nM [x]constant [x]boundary

 Cdc2 = 100 nm

algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Reaction 36, Activation of Cdc25 by Activated MPF

Activation of cdc25 phosphatase by phosphorylation with active M-phase promoting
factor (MPFp).

 reaction: Cdc25 + (MPFp) -> Cdc25p + (MPFp)

reaction rate: (k25*[MPFp]*[Cdc25])/(Km25 + [Cdc25])

 parameters: k25 = 0.02 1/minute

 Km25 = 0.1 nM

 species: Cdc25 = 1 nM (inactive)

 Cdc25p = 0 nM (active)

Initially MPF is inhibited (MPF* reacts to pMPF*).

Reaction 37, Deactivation of Cdc25

Deactivation of cdc25 phosphatase by dephosphorylation with an unknown phosphatase.

 reaction: Cdc25p -> Cdc25

reaction rate: (k25r*[Cdc25p])/(Km25r + [Cdc25p])

 parameters: k25r = 0.1 nM/minute

 Km25r = 1 nM

C-50

 Model of M-Phase Control in Xenopus Oocyte Extracts

 species: Cdc25 = 1 nM (inactive)

 Cdc25p = 0 nM (active)

Reaction 38, Deactivation of Wee1 by Active MPF

Deactivation of Wee1 kinase by phosphorylation with active M-phase promoting factor
(MPFp).

 reaction: Wee1 + (MPFp) -> Wee1p + (MPFp)

reaction rate: (kw*[MPFp]*[Wee1])/(Kmw + [Wee1]) nM/minute

 parameters: kw = 0.02 1/minute

 Kmw = 0.1 nM

 species: Wee1p = 1 nM (inactive)

 Wee1 = 0 nM (active)

Initially MPF is inhibited (MPF* reacts to pMPF*).

Reaction 39, Activation of Wee1

Activation of Wee1 kinase by dephosphorylation with an unknown kinase.

 reaction: Wee1p -> Wee1

reaction rate: (kwr*[Wee1p])/(Kmwr + [Wee1p]) nM/minute

 parameters: kwr = 0.1 nM/minute

 Kmwr = 1 nM

 species: Wee1p = 1 nM (inactive)

 Wee1 = 0 nM (active)

Reaction 40, Activation of Intermediate Enzyme by Active MPF

The inactive intermediate enzyme (IE) is activated by phosphorylation with active M-
phase promoting factor (MPFp).

 reaction: IE + (MPFp) -> IEp + (MPFp)

reaction rate: (kie*[MPFp]*[IE])/(Kmie + [IE])

 parameters: kie = 0.02 1/minute

 Kmie = 0.01nM

 species: IE = 1 nM (inactive)

 IEp = 0 nM (active)

Reaction 41, Deactivation of IE

The active intermediate enzyme (IE) is deactivated by dephosphorylation.

C-51

C Model of M-Phase Control in Xenopus Oocyte Extracts

 reaction: IEp -> IE

reaction rate: (kier*[IEp])/(Kmier + [IEp])

 parameters: kier = 0.15 nM/minute

 Kmier = 0.01 nM

 species: IE = 1 nM (inactive)

 IEp = 0 nM (active)

Reaction 42, APC Activation by IEp

Anaphase-promoting complex (APC) is activated by an active intermediate enzyme (IEp).

 reaction: APCi + IEp -> APCa + IEp

reaction rate: (kap*[IEp]*[APCi])/(Kmap + [APCi])

 parameters: kap = 0.13 1/minute

 Kmap = 0.01 nM

 species : APCi = 1 nM

 APCa = 0 nM

Reaction 43, APC Deactivation

Anaphase-promoting complex (APC) is deactivated.

 reaction: APCa -> APCi

reaction rate: (kapr*[APCa])/(Kmapr + [APCa])

 parameters: kapr = 0.13 nM/minute

 Kmapr = 1 nM

 species : APCi = 1 nM

 APCa = 0 nM

Block Diagram of the M-Phase Control Model with Reactions

C-52

 Model of M-Phase Control in Xenopus Oocyte Extracts

C-53

C Model of M-Phase Control in Xenopus Oocyte Extracts

C-54

 Model of M-Phase Control in Xenopus Oocyte Extracts

References

[1] Borisuk M, Tyson J (1998), “Bifurcation analysis of a model of mitotic control in frog
eggs,” Journal of Theoretical Biology, 195(1):69–85, PubMed 9802951.

[2] Marlovits G, Tyson C, Novak B, Tyson J (1998), “Modeling M-phase control in
Xenopus oocyte extracts: the surveillance mechanism for unreplicated DNA,”
Biophysical Chemistry, 72(1-2):169–184, PubMed 9652093.

[3] Novák B, Tyson J (1993), “Numerical analysis of a comprehensive model of M-phase
control in Xenopus oocyte extracts and intact embryos,” Journal of Cell Science,
106(4):1153–1168, PubMed 8126097.

C-55

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9802951&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9652093&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8126097&dopt=Abstract

